[go: up one dir, main page]

login
A124209
Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^61 + n^63 is prime.
5
5, 15, 140, 359, 615, 876, 941, 1109, 1230, 1292, 1302, 1325, 1752, 1799, 2064, 2535, 2645, 2690, 2942, 3042, 3138, 3200, 3449, 3473, 3527, 3560, 3713, 4070, 4488, 4658, 4767, 5055, 5169, 5195, 5472, 5592, 5604, 5841, 5856, 5939, 6201, 6669, 6677, 6731, 6857
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1237 (n = 1..230 from Vincenzo Librandi)
MAPLE
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 1, a(n-1)) while
not isprime(1+(k^65-k)/(k^2-1)) do od; k
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 26 2014
MATHEMATICA
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55 + n^57 + n^59 + n^61 + n^63], Print[n]], {n, 1, 2400}]
Select[Range[7000], PrimeQ[Total[#^Range[1, 63, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
PROG
(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 31, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014
(Magma) [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..63 by 2]]]; // Vincenzo Librandi, Jun 28 2014
CROSSREFS
Cf. A049407, similar sequences listed in A244376.
Sequence in context: A050542 A091096 A116957 * A207970 A207971 A245648
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
a(28) and beyond from Derek Orr, Jun 24 2014
STATUS
approved