OFFSET
1,9
COMMENTS
Matrices: {{0}}, {{1, -1}, {-1, 0}}, {{1, -1, 0}, {-1, 1, -1}, {0, -1, 0}}, {{1, -1, 0, 0}, {-1, 1, -1, 0}, {0, -1, 1, -1}, {0, 0, -1, 0}}, {{1, -1, 0, 0, 0}, {-1, 1, -1, 0, 0}, {0, -1, 1, -1, 0}, {0, 0, -1, 1, -1}, {0, 0, 0, -1, 0}}, {{1, -1, 0, 0, 0, 0}, {-1, 1, -1, 0, 0, 0}, {0, -1, 1, -1, 0, 0}, {0, 0, -1, 1, -1, 0}, { 0, 0, 0, -1, 1, -1}, {0, 0, 0, 0, -1, 0}} Determinants ( not all Sl(3,Z) and invertable): Table[Det[M[d]], {d, 1, 10}] {0, -1, -1, 0, 1, 1, 0, -1, -1, 0}
FORMULA
t(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, 0, 0]]]
EXAMPLE
Triangle begins:
{0},
{0, -1},
{-1, -1, 1},
{-1, 1, 2, -1},
{0, 3, 0, -3, 1},
{1, 2, -5, -2, 4, -1},
{1, -2, -7, 6, 5, -5, 1},
{0, -5, 0, 15, -5, -9, 6, -1},
{-1, -3, 12, 9, -25, 1, 14, -7, 1},
{-1, 3, 15, -18, -29, 35,7, -20, 8, -1},
{0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1}
Some of the polynomials are Steinbach.
MATHEMATICA
T[n_, m_, d_] := If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, 0, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[M[1], Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a]
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson and Roger L. Bagula, Oct 30 2006
EXTENSIONS
Looking at the triangle suggests that the very first term should be 1, not 0. - N. J. A. Sloane, Nov 01 2006
STATUS
approved