OFFSET
1,7
COMMENTS
Pentadiagonals give cycles in the graphs. Absolute value of the Row sum is new as well: Table[Sum[Abs[a[[n]][[m]]], {m, 1, n}], {n, 1, Length[a]}] {0, 1, 2, 6, 10, 19, 43, 82, 144, 270, 557}
FORMULA
m(n,m,d)=If[ n == m, 0, If[n == m - 1 || n ==m + 1, -1, If[n == m - 2 || n == m + 2, -1, 0]]]
EXAMPLE
Triangular sequence:
{0},
{0, -1},
{-1, 0, 1},
{-2, 3, 0, -1},
{0, 4, -5, 0, 1},
{2, -3, -6, 7, 0, -1},
{3, -12, 10, 8, -9, 0, 1},
{0, -9, 30, -21, -10, 11, 0, -1},
{-3, 12, 11, -56, 36, 12, -13, 0, 1},
{-4, 30, -60, -1, 90, -55, -14, 15, 0, -1},
{0, 16, -100, 168, -29, -132, 78, 16, -17, 0, 1}
MATHEMATICA
T[n_, m_, d_] := If[ n == m, 0, If[n == m - 1 || n == m + 1, -1, If[n == m - 2 || n == m + 2, -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a]
CROSSREFS
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 14 2006
STATUS
approved