[go: up one dir, main page]

login
A123252
a(n) = smallest prime of the form 2^k + 2n - 1, k = 0, 1, ..., or 0 if there is none.
2
3, 5, 7, 11, 11, 13, 17, 17, 19, 23, 23, 31, 29, 29, 31, 47, 37, 37, 41, 41, 43, 47, 47, 79, 53, 53, 61, 59, 59, 61, 317, 67, 67, 71, 71, 73, 89, 79, 79, 83, 83, 211, 89, 89, 97, 107, 97, 97, 101, 101, 103, 107, 107, 109, 113, 113, 241, 131, 149, 127, 137, 127, 127, 131
OFFSET
1,1
COMMENTS
If n == 0 (mod 3) then the exponent k must be odd, if n>1 and n == 1 (mod 3) then k must be even and if n == 2 (mod 3) then k can be either.
Records: 3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 79, 317, 1163, 1048847, 536871199, 2^955 + 773, ..., . - Robert G. Wilson v
FORMULA
a(n) = 2^A067760(n-1) + 2n-1 if A067760(n-1) > 0, 0 if A067760(n-1) = 0. - Robert Israel, Jan 14 2017
EXAMPLE
For n = 4, p = 2 -> 2^2+(2*4-1) = 11, the fourth entry because 2^1+(2*4-1) which equals 9 is not a prime.
MATHEMATICA
f[n_] := Block[{p = 1}, While[ !PrimeQ[2^p + 2n - 1], p++ ]; 2^p + 2n - 1]; Array[f, 64] (* Robert G. Wilson v *)
PROG
(PARI) g2(n) = forstep(k=1, n, 2, for(p=1, n, y=k+2^p; if(isprime(y), print1(y", "); break)))
CROSSREFS
Cf. A067760.
Sequence in context: A112070 A208643 A375345 * A352185 A066168 A058024
KEYWORD
nonn
AUTHOR
Cino Hilliard, Oct 08 2006
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 11 2006
Name edited by Robert Israel, Jan 14 2017
STATUS
approved