[go: up one dir, main page]

login
A123107
Prime septets of form k, k+2100, k+4200, k+6300, k+8400, k+10500, k+12600.
0
1847, 3947, 6047, 8147, 10247, 12347, 14447, 3947, 6047, 8147, 10247, 12347, 14447, 16547, 26497, 28597, 30697, 32797, 34897, 36997, 39097, 34913, 37013, 39113, 41213, 43313, 45413, 47513, 35771, 37871, 39971, 42071, 44171, 46271, 48371
OFFSET
1,1
COMMENTS
All members of the prime septet are included, duplicates are permitted, and the terms are not sorted. - Harvey P. Dale, Oct 11 2018
MAPLE
i:=1:for k from 1 to 70000 do if isprime(k) and isprime(k+2100)and isprime(k+4200)and isprime(k+6300) and isprime(k+8400)and isprime(k+10500)and isprime(k+12600) then a[i]:=k:a[i+1]:=k+2100:a[i+2]:=k+4200:a[i+3]:=k+6300: a[i+4]:=k+8400:a[i+5]:=k+10500:a[i+6]:=k+12600:i:=i+7 fi od: seq(a[n], n=1..i-1);
MATHEMATICA
With[{c=NestList[2100+#&, 0, 6]}, Flatten[#+c&/@Select[Prime[Range[ 5000]], AllTrue[#+c, PrimeQ]&]]](* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2018 *)
CROSSREFS
Cf. A001097.
Sequence in context: A031935 A137873 A054814 * A105000 A094377 A080395
KEYWORD
nonn
AUTHOR
Miklos Kristof, Sep 28 2006
STATUS
approved