[go: up one dir, main page]

login
A122748
Bishops on an n X n board (see Robinson paper for details).
1
1, 1, 2, 2, 4, 8, 16, 40, 72, 260, 432, 1976, 2880, 17632, 23040, 177248, 201600, 2001680, 2016000, 24879520, 21772800, 338969216, 261273600, 5002865792, 3353011200, 79676972608, 46942156800, 1358997441920, 697426329600, 24740358817280, 11158821273600, 478218277674496
OFFSET
0,3
REFERENCES
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (M_n, p. 208)
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
MAPLE
unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end;
MATHEMATICA
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
a[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)
CROSSREFS
Sequence in context: A090129 A001137 A123593 * A108774 A063402 A175195
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 25 2006
STATUS
approved