OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Azulenoids, MATCH, No. 34, 1996, 91-108.
Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
FORMULA
a(n) = 15*Fibonacci(2*k-1)-5*Fibonacci(2*k)-10 = 5*A004146(n-1).
G.f.: -5*x^2*(1+x) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Nov 23 2014
a(1)=0, a(2)=5, a(3)=25, a(n) = 4*a(n-1)-4*a(n-2)+a(n-3). - Harvey P. Dale, Apr 21 2015
a(n) = -5*2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(3+sqrt(5))+(-3+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016
MATHEMATICA
LinearRecurrence[{4, -4, 1}, {0, 5, 25}, 40] (* Harvey P. Dale, Apr 21 2015 *)
PROG
(PARI) concat(0, Vec(-5*x^2*(1+x)/((x-1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Nov 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 23 2006
EXTENSIONS
More terms from Harvey P. Dale, Apr 21 2015
STATUS
approved