OFFSET
1,1
COMMENTS
If both 2^n-3 and 2^n-1 are prime then numbers of the form 2^(n-1)*(M_n-2)*M_n appear in the sequence, where M_n means Mersenne prime.
EXAMPLE
2^8*7*19*37*73*509, 2^8*5*7*19*37*509, 2^8*5^2*7*19*29*31*37*509, 2^9*3*11*31*1021, 2^9*3*7*11^2*19*31*131*1021, 2^11*3^6*5*7*13*23*137*467*1093*4093, 2^13*3*11*43*127*16381, 2^13*3*7*11^2*19*43*127*131*16381 are terms, but there may be many other terms between 3*10^7 and them.
MATHEMATICA
f[p_, e_] := (p^(e+1)-2*p+1) * (p^(e+1)-1)/((p-1)^2 * (p^e - 1)); q[n_] := IntegerQ[(Times @@ f @@@ FactorInteger[n])/n]; Select[Range[2, 10^5], q] (* Amiram Eldar, Sep 19 2022 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Yasutoshi Kohmoto, Sep 30 2006
EXTENSIONS
More terms from R. J. Mathar, Oct 01 2006
a(12)-a(14) from Amiram Eldar, Sep 19 2022
STATUS
approved