[go: up one dir, main page]

login
A122277
Length of n-th run of zeros in A122276.
5
5, 3, 5, 4, 2, 2, 2, 1, 4, 3, 2, 1, 5, 2, 4, 2, 2, 1, 3, 1, 2, 1, 3, 2, 1, 2, 4, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 2, 1, 2, 2, 3, 2, 1, 5, 2, 2, 2, 2, 1, 4, 4, 2, 1, 2, 1, 2, 1, 2, 2, 2, 3, 3, 2, 3, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 5, 1, 2, 3, 3, 3, 2, 1, 2
OFFSET
1,1
COMMENTS
A run of zeros in A122276 corresponds to a section of A096535 where a(j) = a(j-1) + a(j-2) holds.
MATHEMATICA
f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; k = 435; t = Nest[f, {1, 1}, k]; s = {}; Do[ AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, k}]; Length /@ Select[Split@s, Union@# == {0} &] (* Robert G. Wilson v Sep 02 2006 *)
PROG
(PARI) {m=1000; a=1; b=1; c=0; for(n=2, m, d=divrem(a+b, n); if(d[1]==0, c++, if(c>0, print1(c, ", "); c=0)); a=b; b=d[2])}
CROSSREFS
Cf. A096535, A122276, A122278 (records), A122279 (where records occur).
Sequence in context: A153386 A112920 A109364 * A198211 A216707 A145439
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 29 2006
STATUS
approved