[go: up one dir, main page]

login
A122217
Denominators in infinite products for Pi/2, e and e^gamma (unreduced).
6
1, 1, 3, 27, 3645, 184528125, 3065257232666015625, 25071642180724968784488737583160400390625, 802200753381108669054307548505058630413812174354826201039259103708900511264801025390625
OFFSET
0,3
LINKS
Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.
J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270; arXiv:math/0506319 [math.NT], 2005-2006.
J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
FORMULA
a(n) = Product_{k=1..floor(n/2)+1} (2k-1)^binomial(n,2k-2).
EXAMPLE
Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) *
(4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) *
...
MATHEMATICA
Table[Product[(2k-1)^Binomial[n, 2k-2], {k, 1+Floor[n/2]}], {n, 0, 8}] (* T. D. Noe, Nov 16 2006 *)
CROSSREFS
Cf. A092799. Numerators are A122216. Reduced denominators are A122215.
Sequence in context: A009039 A137092 A122215 * A316368 A068221 A068222
KEYWORD
frac,nonn
AUTHOR
Jonathan Sondow, Aug 26 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 16 2006
STATUS
approved