[go: up one dir, main page]

login
A122086
Number of unlabeled free bicolored trees with n nodes (the colors are not interchangeable).
5
2, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
OFFSET
1,1
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
LINKS
FORMULA
For n even, a(n) = 2*A000055(n) - A000081(n/2), for n odd, a(n) = 2*A000055(n).
G.f.: 2*f(x) - f(x)^2 where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019
PROG
(PARI) \\ here TreeGf is A000081 as g.f.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2)} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
Row sums of A122085.
Antidiagonal sums of A329054.
Same as A125702 except for n = 1.
Sequence in context: A277631 A277633 A001037 * A082594 A376050 A051850
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2006
EXTENSIONS
STATUS
approved