[go: up one dir, main page]

login
A121969
Numbers n such that if you subtract n-reversed from n you get a natural number with the same digits as n.
3
954, 1980, 2961, 3870, 5823, 7641, 9108, 19980, 29880, 29961, 32760, 38970, 39780, 49680, 49842, 54270, 58923, 59580, 60273, 60732, 69462, 69480, 69723, 70254, 73260, 76941, 79344, 79380, 89226, 89280, 89604, 90810, 91908, 96732, 99108
OFFSET
1,1
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 154 (entry for 1980).
LINKS
EXAMPLE
954 - 459 = 495, 19980 - 8991 = 10989.
MATHEMATICA
srdQ[n_]:=Module[{idn=IntegerDigits[n], rn}, rn=FromDigits[Reverse[idn]]; n>rn&&Sort[IntegerDigits[n-rn]]==Sort[idn]]; Select[Range[100000], srdQ] (* Harvey P. Dale, Jun 21 2013 *)
PROG
(PARI) isok(n) = {my(d = digits(n)); diff = my(n - subst(Polrev(d), x, 10)); (diff > 0) && (vecsort(digits(diff)) == vecsort(d)); } \\ Michel Marcus, Sep 04 2015
CROSSREFS
Cf. A055161.
Sequence in context: A048267 A251677 A073500 * A203024 A055161 A055158
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, Sep 04 2006
STATUS
approved