[go: up one dir, main page]

login
A121634
Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k 2-cell columns starting at level 0 (n >= 1; 0 <= k <= n-1).
2
1, 1, 1, 2, 3, 1, 8, 10, 5, 1, 42, 44, 25, 8, 1, 264, 242, 144, 57, 12, 1, 1920, 1594, 962, 429, 117, 17, 1, 15840, 12204, 7366, 3536, 1131, 219, 23, 1, 146160, 106308, 63766, 32118, 11453, 2664, 380, 30, 1, 1491840, 1036944, 616436, 320710, 123742, 32765, 5704, 620, 38, 1
OFFSET
1,4
COMMENTS
A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
LINKS
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
Row sums are the factorials (A000142).
T(n,0) = A121635(n).
Sum_{k=0..n-1} k*T(n,k) = A121636(n).
The row generating polynomials satisfy P(n,t) = (t+n-2)[(n-2)!+P(n-1,t)] for n >= 3, P(1,t)=1 and P(2,t)=1+t.
EXAMPLE
T(2,0)=1 and T(2,1)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 0 and 1 columns with exactly 2 cells starting at level 0.
Triangle starts:
1;
1, 1;
2, 3, 1;
8, 10, 5, 1;
42, 44, 25, 8, 1;
MAPLE
P[1]:=1: P[2]:=1+t: for n from 3 to 11 do P[n]:=sort(expand((t+n-2)*((n-2)!+P[n-1]))) od: for n from 1 to 11 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
MATHEMATICA
P[n_ /; n >= 3, t_] := P[n, t] = (t + n - 2) ((n - 2)! + P[n - 1, t]);
P[1, _] = 1; P[2, t_] = 1 + t;
Table[CoefficientList[P[n, t], t], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 15 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 13 2006
STATUS
approved