OFFSET
1,5
LINKS
Alois P. Heinz, Rows n = 0..150, flattened
FORMULA
EXAMPLE
T(5,3)=6 because we have [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1] and [3,1,1].
Triangle starts:
1;
1, 1;
1, 2, 1;
0, 3, 3, 1;
1, 2, 6, 4, 1;
0, 3, 7, 10, 5, 1;
0, 2, 9, 16, 15, 6, 1;
...
MAPLE
with(combinat): G:=1/(1-t*sum(z^fibonacci(i), i=2..40))-1: Gser:=simplify(series(G, z=0, 25)): for n from 1 to 23 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 1 to 15 do seq(coeff(P[n], t, j), j=1..n) od; # yields sequence in triangular form
# second Maple program:
g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end:
T:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(g(j), T(n-j, t-1), 0), j=1..n)))
end:
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Oct 10 2022
MATHEMATICA
nmax = 14;
T = Rest@CoefficientList[#, t]& /@ Rest@(1/(1 - t*Sum[z^Fibonacci[i],
{i, 2, nmax}]) - 1 + O[z]^(nmax+1) // CoefficientList[#, z]&);
Table[T[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 02 2022 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 07 2006
STATUS
approved