OFFSET
0,1
COMMENTS
The continued fraction (A121473) of this constant has large partial quotients: c = [0; 1, 6, 146, 8, 37783544111994270385152, ...]. See the MathWorld link for more information regarding devil's staircase constants.
LINKS
Eric Weisstein's World of Mathematics, Devil's Staircase
FORMULA
c = Sum_{n>=1} 1/2^[n/log(2)] = Sum_{n>=1} [n*log(2)]/2^n, where [z]=floor(z).
EXAMPLE
c=0.85728238310340617751190330850973399759098831209314692225782429246...
PROG
(PARI) a(n)=local(t=log(2), x=sum(m=1, 10*(n+1), 1/2^floor(m/t))); floor(10^n*x)%10
(PARI) a(n)=local(t=log(2), x=sum(m=1, 10*(n+1), floor(m*t)/2^m)); floor(10^n*x)%10
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Aug 01 2006
STATUS
approved