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 Abstract 

 

The pattern of the composite numbers that have a particular lowest prime factor repeats over 

intervals equal to the primorial of that lowest prime factor. The number of composites having 

that prime for their lowest factor is constant over those primorial intervals, and the value of that 

constant for each prime is directly related to the value of the previous prime and its constant 

composite to primorial ratio. 

 

Those primorial patterns apply to twin primes. The composite numbers that eliminate twin prime 

candidates can be counted in terms of their lowest prime factors. Those twin prime eliminations 

repeat over primorial intervals such that the rate of elimination can be represented by an infinite 

series over all primes 5 and greater. We calculate the partial sums for that series for the first 15 

million primes and examine the implications of the convergence of that infinite series. 
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1 Primorial Soup 
 

It is known that the pattern of composite numbers repeats with a period equal to the primorial of 

each prime factor. Dickson [1] refers to remarks by H. J. S. Smith and theorems by J. 

DesChamps regarding this property, and Weisstein [2] makes note of it. The primorial is 

analogous to a factorial applied to the sequence of prime numbers. The primorial for the prime pn 

is the product of all primes up to and including pn, and it is denoted as pn#. By the definition of 

factorial, p1# = 2, and then for every prime greater than 2: 

 

 pn# = pn • pn–1#        (1) 

 

Since pn itself is prime and there can be no composites less than pn having pn for a factor, it is 

intuitive to start the first primorial interval at pn + 1, such that it ends at  pn + pn#. Because in 

some ways we can think of composite numbers as molecules composed of their constituent prime 

factor atoms and arranged in a lattice across these primorial intervals, the value pn + pn# will be 

called the first atomic boundary and labeled n. 

 

If we make a function Tn(x) to count the total number of composites that have pn as their lowest 

prime factor, then we find that the count in the first and all subsequent primorial intervals is a 

constant. This constant composite to primorial ratio shall be labeled n, where n Tn(n). 

 

Table 1: Composite to Primorial Ratio and Ratio Summation for the First Twelve Primes 

 

n pn pn# npn + pn# n Tn(n) Σ (Numerator) 

1 2 2 4 1 1 

2 3 6 9 1 4 

3 5 30 35 2 22 

4 7 210 217 8 162 

5 11 2310 2321 48 1830 

6 13 30030 30043 480 24270 

7 17 510510 510527 5760 418350 

8 19 9699690 9699709 92160 8040810 

9 23 223092870 223092893 1658880 186597510 

10 29 6469693230 6469693259 36495360 5447823150 

11 31 200560490130 200560490161 1021870080 169904387730 

12 37 7420738134810 7420738134847 30656102400 6317118448410 

 

It is readily apparent in Table 1 that each composite to primorial ratio is related to the previous 

prime and its ratio by the following: 

 

 n = n–1 • (pn–1 – 1)        (2) 

 

This relationship can be rigorously proven by observing the number of complete residue systems 

modulus the primorial of each of the previous primes up to pn that exist within a pn# primorial 

interval. Note also that Sloane [3] gives this as sequence A005867 in the On-Line Encyclopedia 
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of Integer Sequences (OEIS) with the comment that it corresponds to the local minima of Euler’s 

phi (totient) function. 

 

2 To Be, Or Not To Be 
 

Twin primes are primes of the form (p, p + 2), such as (3, 5), (5, 7), (11, 13), (17, 19), and so 

on. The twin prime conjecture is a currently unproven conjecture stating that there are infinitely 

many twin primes. It is well established that all twin primes after the first are of the form 6n ± 1. 

 

Every pair of positive integers (6n – 1, 6n + 1) can be considered to be a twin prime candidate, 

where the value 6n is the center post. In order to determine when both members of a twin prime 

candidate are indeed prime, it is important then to understand when and how one or both of them 

are not. A candidate is eliminated when either or both of the numbers adjacent to its center post 

are composite. Let us call such a composite an eliminating composite. 

 

It is fairly easy to establish that the primes p1 = 2 and p2 = 3 cannot produce any eliminating 

composites, and that all composites having p3 = 5 or greater for their lowest prime factor are 

eliminating composites. See Table 2, for example, and notice that all of the lowest prime 

factorizations are of the form 5 • (6n ± 1) and that starting above 5 there are two such composites 

in each interval of p3# = 30, which illustrates the relationship presented in the previous section. 

 

Table 2: Eliminations of Twin Prime Candidates by p3 = 5 in the Interval up to 217 

 

Candidate 

Center Post 

Eliminating 

Composite 

Prime 

Factorization 

Lowest Prime 

Factorization 

Residues 

(mod 30) (mod 6) 

24 25 5 • 5 5 • (6 – 1) 25 1 

36 35 5 • 7 5 • (6 + 1) 5 5 

54 55 5 • 11 5 • (12 – 1) 25 1 

66 65 5 • 13 5 • (12 + 1) 5 5 

84 85 5 • 17 5 • (18 – 1) 25 1 

96 95 5 • 19 5 • (18 + 1) 5 5 

114 115 5 • 23 5 • (24 – 1) 25 1 

126 125 5 • 5 • 5 5 • (24 + 1) 5 5 

144 145 5 • 29 5 • (30 – 1) 25 1 

156 155 5 • 31 5 • (30 + 1) 5 5 

174 175 5 • 5 • 7 5 • (36 – 1) 25 1 

186 185 5 • 37 5 • (36 + 1) 5 5 

204 205 5 • 41 5 • (42 – 1) 25 1 

216 215 5 • 43 5 • (42 + 1) 5 5 

 

There are 30 / 6 = 5 candidates out of every interval of 30, so that means that three candidates 

out of every interval of 30 are not eliminated by p3 = 5. If those candidates are to be eliminated, 

they must be eliminated by a composite having p4 = 7 or higher as its lowest prime factor. 

 

The composites having 7 as their lowest prime factor have a pattern that repeats over intervals of 

p4# = 210, and there are 4 = 8 of them within each such interval. Up to 4 = 217, for instance, 
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those eight composites are (49, 77, 91, 119, 133, 161, 203, 217) while in the next interval to 427 

they are (259, 287, 301, 329, 343, 371, 413, 427). This pattern is summarized in Table 3. 

 

Table 3: Factorization of Any p4# = 210 Primorial Interval for the Lowest Prime Factor p4 = 7 

 

Primorial 

Interval Member 

Lowest Prime 

Factorization 

Residues 

Modulo p4# Modulo p3# Modulo p2# 

210n + 49 7 • (30n + 7) 49 (mod 210) 19 (mod 30) 1 (mod 6) 

210n + 77 7 • (30n + 11) 77 (mod 210) 17 (mod 30) 5 (mod 6) 

210n + 91 7 • (30n + 13) 91 (mod 210) 1 (mod 30) 1 (mod 6) 

210n + 119 7 • (30n + 17) 119 (mod 210) 29 (mod 30) 5 (mod 6) 

210n + 133 7 • (30n + 19) 133 (mod 210) 13 (mod 30) 1 (mod 6) 

210n + 161 7 • (30n + 23) 161 (mod 210) 11 (mod 30) 5 (mod 6) 

210n + 203 7 • (30n + 29) 203 (mod 210) 23 (mod 30) 5 (mod 6) 

210(n + 1) + 7 7 • (30(n + 1) + 1) 7 (mod 210) 7 (mod 30) 1 (mod 6) 

 

There are 210 / 6 = 35 candidates out of every interval of 210. With an interval starting above 7, 

there would be 2 • (210 / 30) = 14 eliminating composites produced by p3 = 5. That matches the 

count from Table 2, which conveniently listed them up to 217. Add those 14 to the 8 eliminating 

composites produced by p4 = 7 and that is still only 22. At least 35 – 22 = 13 candidates are not 

eliminated by p3 or p4 in each interval of 210. If those twin prime candidates are to be eliminated, 

it has to be by a composite with a lowest prime factor of p5 = 11 or higher. 

 

But there would only be 13 candidates left if all 22 of those eliminating composites corresponded 

to exactly one unique elimination of a twin prime. They do not. There are cases of double 

eliminations where both of the numbers in the candidate pair are composite. Two such double 

eliminations can be seen in the preceding tables. The value 205 in Table 2 and 210n + 203 from 

Table 3, when n = 0, will both be adjacent to the center post 204, while the 215 from Table 2 and 

210(n + 1) + 7 from Table 3, when n = 0, will doubly eliminate the center post 216. 

 

3 The Double Elimination Round 
 

Let E″m,n represent the double eliminations made by a lower prime pm in combination with the 

prime pn. We can calculate the twin prime count x) by subtracting the total composite count 

contributed by each lowest prime factor and then adding back in the double eliminations within 

that range. For n ≥  3 such that pn ≤  x1/2 and 3 ≤  m ≤  (n – 1) that count is as follows, where the 

initial 1 is to account for the first twin prime (3, 5) and the \ in (x \ 6) indicates integer division. 

 

 x) = 1 + (x \ 6) – Tn(x) + E″m,n(x)     (3) 

 

If we account for the eliminations of twin prime candidates by lower prime factors pm < pn in this 

way, then pn
2 is the earliest that a prime factor pn can generate a previously unaccounted for 

eliminating composite. For example, Table 2 lists the composites 35 and 175, which have both 5 

and 7 as factors, as being eliminations by p3 = 5. Those composites are not included in the 

factorizations in Table 3. Table 1 also includes 55, while Table 2 includes the factorization 

representing 77, both of which have 11 as a factor. Since those composites are counted there, the 
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first composite that has 11 as a factor that needs to be counted in one of the E″m,5 components 

assigned to the prime factor p5 is its square 121. 

 

To give an example using (3), let us evaluate the twin prime count up to x = 217. For this we 

need to consider eliminations by p5 = 11 and p6 = 13, because 112 and 132 are less than 217. The 

square of 17 is 289, though, so we do not need to consider p7, and since 13 • 17 = 221 we know 

that 169 is the only eliminating composite that can be attributed to p6 in this interval. On the 

other side of its center post is the prime 167, so it can be thought of as a single elimination. 

 

The eliminating composites less than 217 having 11 for their lowest prime factor are 121, 143, 

187, and 209. The corresponding candidate center posts are 120, 144, 186, and 210. The 

factorization for 119 is listed in Table 3, and that is adjacent to 120, so it is a double elimination 

with p4, and 144 and 186 are adjacent to 145 and 185, which would be counted as eliminations 

by p3. The only one of the four candidates that is singly eliminated by p5 is the center post at 210. 

 

For x = 217, as can be deduced from the discussion above, E″3,4(217) = 2; E″3,5(217) = 2; and 

E″4,5(217) = 1. There were no double eliminations involving p6 so E″m,6(217) = 0. 

 

 217) = 1 + (217 \ 6) – (14 + 8 + 4 + 1) + (2 + 2 + 1) = 1 + 36 – 27 + 5 = 15 

 

Those fifteen, along with the next twin prime after 217, are listed in Table 4. 

 

Table 4: The First Fifteen Twin Primes Up to 217, Plus One More 

 

 Center Post Twin Prime   Center Post Twin Prime 

1 4 (3, 5)  9 102 (101, 103) 

2 6 (5, 7)  10 108 (107, 109) 

3 12 (11, 13)  11 138 (137, 139) 

4 18 (17, 19)  12 150 (149, 151) 

5 30 (29, 31)  13 180 (179, 181) 

6 42 (41, 43)  14 192 (191, 193) 

7 60 (59, 61)  15 198 (197, 199) 

8 72 (71, 73)  16 228 (227, 229) 

 

From the periodic primorial property presented in part 1, it follows that the pattern of double 

eliminations of twin prime candidates will repeat over intervals of the primorial of the higher of 

the two lowest prime factors involved in each of the eliminating composites. 

 

4 Double Jeopardy: The Primorial Patterns of Double Eliminations  
 

We previously noted that p3 and p4 both eliminate the twin prime candidates centered at 204 and 

216. If we check every multiple of p4# = 210 thereafter we find a similar double elimination. 413 

is 7 • 59 and 415 is 5 • 83, while 425 = 52 • 13 and 427 = 7 • 61, thus the center posts at 414 and 

426 are doubly eliminated by p3 and p4. 623 = 7 • 89 and 625 = 54, while 635 is 5 • 127 and 637 

is 72 • 13, thus the center posts at 624 and 636 are doubly eliminated by p3 and p4 also. These 

results are summarized in Table 5. 
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Table 5: Double Eliminations by p3 = 5 and p4 = 7 within Intervals of p4# = 210 

 

Center Post 
Interval 

Member 
Factorization 

Residues (modulus) 

(210) (30) (6) 

210n + 204 
210n + 203 7 • (30n + 29) 203  5 

210n + 205 5 • (42n + 41)  25 1 

210(n + 1) + 6 
210(n + 1) + 5 5 • (42(n + 1) + 1)  5 5 

210(n + 1) + 7 7 • (30(n + 1) + 1) 7  1 

 

120 was a double elimination by p4 and p5, and 144 and 186 were double eliminations by p3 and 

p5. The primorial p5# = 2310. If we check by 2430, we see that 2429 = 7 • 347 while 2431 = 11 • 

13 • 17. For 2454 and 2496, obviously to one side is a number divisible by 5, while the values on 

the other side, 2453 and 2497, both have 11 for their lowest prime factor. There are many more 

double eliminations for p5 across intervals of its primorial. They are listed in Tables 6 and 7. 

 

Table 6: Double Eliminations by p3 = 5 and p5 = 11 within Intervals of p5# = 2310 

 

Center Post 
Interval 

Member 
Factorization 

Residues (modulus) 

(2310) (30) (6) 

2310n + 144 
2310n + 143 11 • (210n + 13) 143  5 

2310n + 145 5 • (462n + 29)  25 1 

2310n + 186 
2310n + 185 5 • (462n + 31)  5 5 

2310n + 187 11 • (210n + 17) 187  1 

2310n + 474 
2310n + 473 11 • (210n + 43) 473  5 

2310n + 475 5 • (462n + 95)  25 1 

2310n + 516 
2310n + 515 5 • (462n + 103)  5 5 

2310n + 517 11 • (210n + 47) 517  1 

2310n + 804 
2310n + 803 11 • (210n + 73) 803  5 

2310n + 805 5 • (462n + 161)  25 1 

2310n + 1134 
2310n + 1133 11 • (210n + 103) 1133  5 

2310n + 1135 5 • (462n + 227)  25 1 

2310n + 1176 
2310n + 1175 5 • (462n + 235)  5 5 

2310n + 1177 11 • (210n + 107) 1177  1 

2310n + 1506 
2310n + 1505 5 • (462n + 301)  5 5 

2310n + 1507 11 • (210n + 137) 1507  1 

2310n + 1794 
2310n + 1793 11 • (210n + 163) 1793  5 

2310n + 1795 5 • (462n + 359)  25 1 

2310n + 1836 
2310n + 1835 5 • (462n + 367)  5 5 

2310n + 1837 11 • (210n + 167) 1837  1 

2310n + 2124 
2310n + 2123 11 • (210n + 193) 2123  5 

2310n + 2125 5 • (462n + 425)  25 1 

2310n + 2166 
2310n + 2165 5 • (462n + 433)  5 5 

2310n + 2167 11 • (210n + 197) 2167  1 
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Table 7: Double Eliminations by p4 = 7 and p5 = 11 within Intervals of p5# = 2310 

 

Center Post 
Interval 

Member 
Factorization 

Residues (modulus) 

(2310) (210) (6) 

2310n + 120 
2310n + 119 7 • (330n + 17)  119 5 

2310n + 121 11 • (210n + 11) 121  1 

2310n + 342 
2310n + 341 11 • (210n + 31) 341  5 

2310n + 343 7 • (330n + 49)  133 1 

2310n + 582 
2310n + 581 7 • (330n + 83)  161 5 

2310n + 583 11 • (210n + 53) 583  1 

2310n + 1728 
2310n + 1727 11 • (210n + 157) 1727  5 

2310n + 1729 7 • (330n + 247)  49 1 

2310n + 1968 
2310n + 1967 7 • (330n + 281)  77 5 

2310n + 1969 11 • (210n + 179) 1969  1 

2310n + 2190 
2310n + 2189 11 • (210n + 199) 2189  5 

2310n + 2191 7 • (330n + 313)  91 1 

  

If we count up the entries in the three previous tables, we have 2 double eliminations by p3 and 

p4 within Intervals of p4#; 12 double eliminations by p3 and p5 within Intervals of p5#; and 6 

double eliminations by p4 and p5 within intervals of p5#. Is there a pattern to those values? Three 

counts are not many to work with. Fortunately, since we are only concerned with tabulating the 

counts for a certain number of lowest prime factors, and not with completely factorizing every 

candidate pair, it is easy to construct a program that can quickly give us more such counts.  

 

Table 8 shows the numerical results of just such a program which considered prime factors up to 

p11 = 31 within the interval to 11 + 2 = 200560490163. It was necessary to go to n + 2 for each 

count in case n + 1 was a potential center post that was eliminated by n + 2 being a composite 

of one of the factors under consideration. To shorten the notation, let ″n = n + 2. 

 

Table 8: Double Elimination Counts within Primorials, E″m,n(″n), 

With Lower Prime pm Along the Left and Higher Prime pn Across the Top 

 

m,n  4 5 6 7 8 9 10 11 

 p 7 11 13 17 19 23 29 31 

3 5 2 12 120 1440 23040 414720 9123840 255467520 

4 7  6 60 720 11520 207360 4561920 127733760 

5 11   30 360 5760 103680 2280960 63866880 

6 13    270 4320 77760 1710720 47900160 

7 17     2970 53460 1176120 32931360 

8 19      44550 980100 27442800 

9 23       757350 21205800 

10 31        15904350 

 Total 2 18 210 2790 47610 901530 20591010 592452630 

 

For pm = 5 and pn = 23, double elimination number 414720 occurs at 9 + 1 = 223092894. 
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For all entries in the Table 8 that have an entry to their left such that 3 <  m < (n – 1), the 

following relationship holds: 

 

  E″m,n(″n) = (pn–1 – 1) • E″m,n–1(″n–1)     (4) 

 

The logic for proving equation (4) would be the same as that used to prove equation (2), namely 

that only certain residues in the complete residue system of previous primorials are lined up in 

the correct positions necessary to produce an eliminating composite when the members of those 

previous primorials are multiplied by the next prime to initially generate the primorial interval 

corresponding to that next prime. 

 

What about the entries in Table 8 that do not have a value to their left on which to base the next 

double elimination count? To find out, let us use E″n to represent the total number of double 

eliminations that are already attributed to a lower prime pm < pn within each pn# primorial 

interval, and then E′n to represent those eliminations (single or double) that can be attributed to 

pn itself within each pn# primorial interval. 

 

 E″n = E″m,n(″n)  {for m = 3 to (n – 1)    (5) 

 

 E′n = n – E″n         (6) 

 

For example, E″5 = E″3,5(″5) + E″4,5(″5) = 12 + 6 = 18, which means that E′5 = 48 – 18 = 30. 

 

Once again a word of caution; E′n does not represent the number of single eliminations. Some of 

the eliminations counted by E′n may be double eliminations that are later attributed to a higher 

prime. That is, they may be included in a subsequent E″q term for a prime pq > pn. For instance, 

168 was a single elimination by p6, as is 168 + p6#, since 30197 is prime and 30199 = 13 • 2323. 

But 168 + 2p6# is a double elimination because 60227 = 229 • 263. 

 

What E′n does represent is the unique twin prime elimination count. It is the number of twin 

prime eliminations over intervals of the primorial pn# that we get when we take out those that 

were double counted because the other half of the pair was eliminated by an earlier prime. For 

example, E′4 = 8 – 2 = 6. The two that are subtracted out initially are the eliminations of 204 and 

216, which are counted in the E′3 component for p3. One of those six that remain will be counted 

again in E″5 (that being the elimination of 120) but then that over-count is corrected in the 

computation of E′5. Table 9 shows the E′n value for the first eleven primes. Since there are no 

eliminations by p2 whatsoever we can say that E″2 = 0 so that E′3 = 3 = 2. 

 

Table 9: Unique Twin Prime Elimination Counts Over Primorial Intervals 

 

n 3 4 5 6 7 8 9 10 11 

pn 5 7 11 13 17 19 23 29 31 

n 2 8 48 480 5760 92160 1658880 36495360 1021870080 

E″n 0 2 18 210 2790 47610 901530 20591010 592452630 

E′n 2 6 30 270 2970 44550 757350 15904350 429417450 
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Notice that the E′n values in Table 9 all match the values that appear in Table 8 as the double 

elimination count for that prime when paired with the next higher prime. 

 

  E″n–1,n(″n) = E′n–1        (7) 

 

When equation (7) is combined with those presented earlier, it is straightforward to derive that: 

 

  E′n = (pn–1 – 2) • E′n–1        (8) 

 

This relationship is clearly demonstrated in the last row in Table 9. The integer sequences 

formed by E″n and by E′n have been submitted to the On-Line Encyclopedia of Integer 

Sequences as sequences A121407 and A121406, respectively. 

 

4 Double Vision: The Implications of Primorial Patterns on Twin Primes 
 

Equation (8) allows us to calculate a twin prime elimination ratio, (E′n / pn#), for each prime 

factor. Starting with (E′3 / p3#) = 2 / 30, we can easily calculate subsequent ratios. 

 

 (E′n / pn#) = (E′n–1 / pn–1#) • (pn–1 – 2) / pn     (9) 

 

The first several values of the ratios formed by equation (9) are listed in Table 10. 

 

Table 10: Twin Prime Elimination to Primorial Ratios and Ratio Summation 

 

n pn E′n pn# (E′n / pn#) Σ (E′n / pn#) 

3 5 2 30 0.06666667 0.06666667 

4 7 6 210 0.02857143 0.09523810 

5 11 30 2310 0.01298701 0.10822511 

6 13 270 30030 0.00899101 0.11721612 

7 17 2970 510510 0.00581771 0.12303383 

8 19 44550 9699690 0.00459293 0.12762676 

9 23 757350 223092870 0.00339477 0.13102153 

10 29 15904350 6469693230 0.00245829 0.13347982 

11 31 429417450 200560490130 0.00214109 0.13562091 

12 37 12453106050 7420738134810 0.00167815 0.13729905 

13 41 435858711750 304250263527210 0.00143257 0.13873162 

14 43 16998489758250 13082761331670030 0.00129930 0.14003093 

15 47 696938080088250 614889782588491410 0.00113344 0.14116436 

16 53 31362213603971250 32589158477190044730 0.00096235 0.14212671 

 

One application for these ratios is to estimate values of the twin prime counting function, x). 

For x ≥  4 and n ≥  3 such that pn < x1/2 the estimation is given by: 

 

 x)  1 + (x / 6) –  ((x – pn) • (E′n / pn#))     (10) 
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For 217), that value would be would be calculated as: 

 

 1 + (217 / 6) – 212 • 2 / 30 – 210 • 6 / 210 – 206 • 30 / 2310 – 204 • 270 / 30030 

 

The result is 217) 12.5, which is about a 16.7% error from the correct count of 15 that we 

found earlier. Table 11 shows the results from equation (10) for powers of ten up to 1016. The 

values were calculated using the primes up to 108 as published by Caldwell [4]. 

 

Table 11: Twin Prime Counting Function Estimates Up to 1016 

 

x x) Estimated x) Actual[a] % Error 

101 2.7 2 35.0 

102 8.7 8 8.8 

103 33.2 35 –5.1 

104 194.4 205 –5.2 

105 1234.6 1224 0.9 

106 8662.4 8169 6.0 

107 63973.6 58980 8.5 

108 489460.4 440312 11.2 

109 3873936.6 3424506 13.1 

1010 31382177.5 27412679 14.5 

1011 259468905.1 224376048 15.6 

1012 2180467679.1 1870585220 16.6 

1013 18579615197.2 15834664872 17.3 

1014 160206996577.1 135780321665 18.0 

1015 1395577415965.0 1177209242304 18.5 

1016 12265983873368.7 10304195697298 19.0 

 
a. Source: Sloane's A007508; Ribenboim 1996, p. 263; Nicely 1998, 1999; Sebah 2002; as referenced in Weisstein, Eric W. "Twin 

Primes." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TwinPrimes.html 

 

Notice the estimation undercounts for 103 and 104 and over-counts for all of the other entries, 

with the percent over-count increasing for the estimates after 104. The estimates vary because the 

distribution of the double eliminations is not regular within the primorial intervals. In the case of 

the double eliminations by p3 and p4, for instance, both double eliminations come near the end of 

each p4# primorial interval. However, there is no reason to believe that the percent error will 

always continue to increase past 1016. The rate of increase in the error seems to be stabilizing 

towards the end of Table 11, and it may be the case that it will decrease again at some point. 

 

That topic will be left for later research, for what is even more significant than using the 

individual ratios to estimate x) is that we can take a summation of the (E′n / pn#) ratios. Let us 

call this value E2, for the twin prime elimination constant, where for n = 3 to ∞ its limit is: 

 

 E2(E′n / pn#)        (11) 

 

http://www.research.att.com/~njas/sequences/A007508
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/TwinPrimes.html
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Expansion of equation (11) gives the following: 

 

 E2 = (2 / 30) + (6 / 210) + (30 / 2310) + (270 / 30030) + (2970 / 510510) + … 

 

The first few of those partial sums were also shown in Table 10. The individual ratios are getting 

smaller, so it appears that the summation will converge to a definite value. But what value? 

 

Thoerem 1: The value of the twin prime elimination constant E2 as given by equation (11) must 

converge to a value of 1 / 6 from below, such that it never exceeds 1 / 6. 

 

Proof: The numerators of each term in E2 are the unique twin prime elimination counts over 

primorial intervals, such that all double eliminations of twin prime candidates are counted as one 

instance of a twin prime elimination. Since the ratio of the total number of candidates is 1 / 6, 

their total unique elimination ratio could never exceed 1 / 6, because that would imply that more 

candidates had been eliminated than actually existed. 

 

But by the prime number theorem, the density of the prime numbers tends to thin out as they go 

off to infinity. This means that the proportion of composites to primes is always increasing. This 

increase can be seen back in Table 1, where the summation of the composite counts will continue 

to grow such that the quotient of the summation over the primorial will forever keep getting 

closer and closer to 1.0. Likewise the proportion of composites that eliminate twin primes will 

forever continue to increase and approach 1 / 6 as the primes go off to infinity. 

          Q.E.D. 

 

The numerical evidence presented in Table 12 supports the assertion of Theorem 1. 

 

Derbyshire [5] discusses how Euler showed that ζ(2) converges to  / 6, where ζ(x) is the 

Riemann Zeta Function and the in the numerator is the familiar constant  3.1415927 and does 

not represent a prime number counting function. 

 

 ζ(2) = 1 + (1/22) + (1/32) + (1/42) + (1/52) + (1/62) + (1/72) + …  (12) 

 

Since ζ(2) =  / 6 it follows that ζ(2) /  = 1 / 6. Table 12 divides each term in the ζ(2) 

summation by  in order to compare them to the individual terms for E2 and it shows a 

comparison of their partial sums for a select group of terms. 

 

The first term in ζ(2) / , for example, is   0.101321183642. That is much larger than the 

first term in E2, which is (2 / 30). But by the second term the former is already smaller than the 

latter: (1 / 4) 0.025330295911 which is less than (6 / 210)  0.028571428571. Each of the 

successive terms shown for E2 is larger than its counterpart in ζ(2) /  as well. 

 

However, the head start given by that larger first term has ζ(2) /  converging towards 1 / 6 

much more rapidly than E2 is. As shown at the end of Table 12, the partial sums for latter have 

not caught up to the former even as far out as nearly 15 million terms. These values were again 

computed using the first 15 million primes up to 275604541 as given by Caldwell [4]. 
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Table 12: Comparison of the Convergence of E2 to ζ(2) /  

 

n+2 p(n+2) 
E2 ζ(2) /  

n-th Term n-th Partial Sum n-th Term n-th Partial Sum 

3 5 0.066666666667 0.066666666667 0.101321183642 0.101321183642 

4 7 0.028571428571 0.095238095238 0.025330295911 0.126651479553 

5 11 0.012987012987 0.108225108225 0.011257909294 0.137909388847 

6 13 0.008991008991 0.117216117216 0.006332573978 0.144241962824 

7 17 0.005817711700 0.123033828916 0.004052847346 0.148294810170 

8 19 0.004592930290 0.127626759206 0.002814477323 0.151109287493 

9 23 0.003394774562 0.131021533768 0.002067779258 0.153177066751 

10 29 0.002458285028 0.133479818795 0.001583143494 0.154760210246 

11 31 0.002141086959 0.135620905755 0.001250878810 0.156011089056 

12 37 0.001678149238 0.137299054993 0.001013211836 0.157024300892 

13 41 0.001432566423 0.138731621416 0.000837365154 0.157861666047 

14 43 0.001299304430 0.140030925846 0.000703619331 0.158565285377 

15 47 0.001133435780 0.141164361626 0.000599533631 0.159164819008 

16 53 0.000962351134 0.142126712760 0.000516944815 0.159681763823 

… 

25 97 0.000403126748 0.147518146114 0.000191533428 0.162355777128 

26 101 0.000379178625 0.147897324739 0.000175904833 0.162531681960 

… 

168 997 0.000017399629 0.158010351238 0.000003676919 0.166058132858 

169 1009 0.000017158207 0.158027509445 0.000003633016 0.166061765874 

… 

1229 9973 0.000000981730 0.161772250511 0.000000067299 0.166584123955 

1230 10007 0.000000978198 0.161773228710 0.000000067190 0.166584191145 

… 

9592 99991 0.000000062771 0.163528456887 0.000000001102 0.166656101922 

9593 100003 0.000000062762 0.163528519650 0.000000001101 0.166656103023 

… 

78498 999983 0.000000004361 0.164486199406 0.000000000016 0.166665375893 

78499 1000003 0.000000004361 0.164486203767 0.000000000016 0.166665375909 

 

n+2 p(n+2) 
E2 ζ(2) /  

n-th Term n-th Partial Sum n-th Term n-th Partial Sum 

664579 9999991 3.2041434E–10 0.165064596726 2.2940857E–13 0.166666514207 

664580 10000019 3.2041338E–10 0.165064597046 2.2940788E–13 0.166666514207 

… 

5761455 99999989 2.4531971E–11 0.165440068281 3.0523632E–15 0.166666649081 

5761456 100000007 2.4531966E–11 0.165440068305 3.0523621E–15 0.166666649081 

… 

14999999 275604533 7.9967276E–12 0.165564699483 4.5031655E–16 0.166666659912 

15000000 275604541 7.9967273E–12 0.165564699491 4.5031649E–16 0.166666659912 
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5 Double the Pleasure, Double the Fun: Locating Twin Primes 
 

How can these primorial patterns help in locating twin primes? A good place to look for twin 

primes is in the interval between the first atomic boundary for that prime and the next composite 

that corresponds to its square, that is, between pn# + pn + 2 and pn# + pn
2 – 2. The +/– 2 is 

specified so as to leave out the adjacent values, since pn would eliminate them. But pn is not 

capable of eliminating any other candidates in that interval. 

 

The numerical results for this interval look promising, at least in the beginning. The twin prime 

(41, 43) falls between 37 and 53 while (227, 229) and (239, 241) are both between 219 and 257. 

The twin primes (2339, 2341) and (2381, 2383) are between 2323 and 2429, and there are two 

twins between 30045 and 30197 as well: (30089, 30091) and (30137, 30139). And if we check 

the interval from 510529 to 510797, we find a total of five twin primes: (510551, 510553), 

(510581, 510583), (510611, 510613), (510617, 510619), and (510707, 510709). 

 

Because the pattern of the composites having prime factors lower than pn repeats, what happens 

is that all of the twin primes that exist in the interval from pn + 2 to pn
2 – 2 get through and their 

corresponding candidates survive past pn in the interval from pn# + pn + 2 to pn# + pn
2 – 2. If 

those corresponding candidates are to be eliminated at all, it must be by a prime factor greater 

than pn. 

 

There are three twin primes (9699731, 9699733), (9699887, 9699889), and (9699917, 9699919) 

between 9699711 and 9700049. They correspond to 19# + (41, 43); 19# + (197, 199); and 19# + 

(227, 229). Unfortunately, however, there are no twin primes between 223092895 and 

223093397. Of the 83 candidates total in that interval, 62 are eliminated by primes less than p9 = 

23. The other 21 are eliminated by various primes greater than 23. 

 

But just because there are no twin primes in a particular interval does not mean that the trend 

completely stops there. If we look in the interval from 6469693261 to 6469694069 above 29#, 

we find five twin primes again: (6469693331, 6469693333), (6469693511, 6469693513), 

(6469693661, 6469693663), (6469694039, 6469694041), and (6469694057, 6469694059). 

 

Higher multiples of those high density base primorials do well, too. There are four twin primes 

between 2 • 29# + 29 + 2 = 12939386491 and 2 • 29# + 292 – 2 = 12939387299. Those four 

correspond to 2 • 29# plus the pairs (227, 229); (311, 313); (599, 601); and (641, 643).  

 

So while no theorem will be offered here as to where twin primes might always be found, the 

evidence points to the intervals between N • pn# + pn + 2 and N • pn# + pn
2 – 2 as being favorable. 

 
Finally, consider that there is one twin prime between 37# + 37 + 2 and 37# + 372 – 2, that being 

(7420738134911, 7420738134913). It corresponds to 37# + (101, 103). The other corresponding 

candidates in this and similar such intervals are eliminated by primes larger than the prime of the 

base primorial, and in some cases much larger. 

 

For example, in the twin prime candidate that corresponds to 37# + (599, 601), the first half of 

the pair, the value 7420738135409, is prime, while the other, 7420738135411, is a product of 



© 2006 Dennis R. Martin      CONFIDENTIAL 

All Rights Reserved 

- 14 - 

2459383 • 3017317. That such eliminations exist further validates our infinite series. While the 

elimination ratio for the prime 2459383 is only about 1.563 • 10–9, that is still not zero, and 

because that ratio can never be zero, it leads us to another theorem. 

 

Theorem 2: It would take infinitely many primes to eliminate all of the twin prime candidates 

greater than any particular value. 

 

Proof: As given by equation (11), we have an infinite series over the primes p3 and greater that 

represents the rate of elimination of twin prime candidates. As given by equation (9), each term 

in that infinite series is generated by multiplying the previous term by (pn–1 – 2) / pn. Since the 

previous prime pn–1 is greater than 2 for all n > 3, the multiplier ((pn–1 – 2) / pn) is always greater 

than zero, and thus each and every term in the infinite series in non-zero. 

 

It can never be the case that all of the twin prime candidates past a particular value are entirely 

eliminated by only prime factors lower than a certain prime. If that was the case, then those 

eliminating composites would repeat in subsequent primorial intervals such that the elimination 

ratio for larger primes would have to be zero, and that would be a contradiction. 

 

Not only would it take infinitely many primes to eliminate all twin prime candidates from a 

particular value onward, but it would take all of the primes 5 and greater to eliminate all of the 

candidates from any point out to infinity. 

           Q.E.D. 

 

5 Open Questions and Conclusions 
 

What does theorem 2 imply about the infinitude of the twin primes themselves? Let us assume 

that the number of twin primes is finite. That would mean that there is a last or maximum twin 

prime, (pmax – 2, pmax). If that is true, then there must be a prime number pe whose square, the 

first eliminating composite that it can generate, is greater than that last twin prime, i.e., pe
2 > 

pmax. There cannot be any twin primes in the primorial interval from pe
2 to pe

2 + pe#. 

 

There would be an integer number of primorial intervals for each of the primes up to pe within an 

interval of pe#. Therefore the elimination rate for the primes less than or equal to pe within that 

interval would precisely match the summation of E2 up to and including the prime pe. The 

elimination rate for the primes greater than pe within that interval would have to be (1/6) minus 

the elimination rate of the primes up to and including the prime pe. 

 

But that would match the elimination rate for all of the primes greater than pe out to infinity. 

There are only a finite number of primes greater than pe, though, which could be the lowest 

prime factor of a composite within that interval. That is, only the primes up to a pi ≤ (pe
2 + pe#)1/2 

could account for eliminations of twin prime candidates between pe
2 and pe

2 + pe#. Now, the 

pattern for those composites would not repeat within intervals of pe#; it would repeat within 

intervals of the larger primorials within pi# > pe#. So while the elimination rate for those primes 

would tend toward the summation of their individual (E′n / pn#) ratios, the actual rate could 

increase in more narrow intervals. But then by the time a primorial interval from pi
2 to pi

2 + pi# 

was completed, the elimination rate for them within that pi# primorial interval would precisely 
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match the summation of their individual ratios, and now the primes from pi up to (pi
2 + pi#)1/2 

would have to exceed their primorial ratios to eliminate the remaining candidates in this larger 

interval. 

 

Is it possible for the twin prime elimination rate of a finite number of lowest prime factors to 

forever exceed their primorial elimination ratios within earlier and smaller primorials in this 

way? It also seems interesting to note that the number of unique twin prime eliminations for each 

prime is always an even number over its primorial, whereas the total number of twin prime 

candidates in any primorial of p3# or larger is always odd. Could a finite number of prime factors 

always produce an odd number of twin prime eliminations exactly as needed from a certain point 

forever onward out to infinity so as to make the number of twin primes finite? 

 

While it seems highly unlikely that could be the case, an actual proof has been elusive. Shanks 

[6] stated that the evidence for the twin prime conjecture was overwhelming. At the very least, 

the infinite series introduced here adds a strong argument to that arsenal. But the primorial 

patterns presented here also have the potential to be applied to other prime gaps, and to sieving in 

general. Perhaps they may eventually lead to other useful insights regarding the distribution of 

prime numbers. 
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