OFFSET
1,1
COMMENTS
Sierpinski proved that k>1 must be of the form 2^(2^j) for k^k+1 to be a prime. All a(n) > 2 must be the Fermat numbers F(m) with m = j+2^j = A006127(j). [Edited by Jeppe Stig Nielsen, Jul 09 2023]
REFERENCES
See e.g. pp. 156-157 in M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001. - Walter Nissen, Mar 20 2010
LINKS
Eric Weisstein's World of Mathematics, Sierpinski Number of the First Kind
MATHEMATICA
Do[f=n^n+1; If[PrimeQ[f], Print[{n, f}]], {n, 1, 1000}]
PROG
(PARI) for(n=1, 9, if(ispseudoprime(t=n^n+1), print1(t", "))) \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
KEYWORD
nonn,bref
AUTHOR
Alexander Adamchuk, Aug 23 2006
EXTENSIONS
Definition rewritten by Walter Nissen, Mar 20 2010
STATUS
approved