[go: up one dir, main page]

login
A121165
Number of fused bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
3
1, 2, 7, 15, 44, 107, 295, 763, 2077, 5533, 15053, 40697, 111028, 302583, 828176, 2267939, 6225340, 17103834, 47062513, 129616014, 357364708, 986110340, 2723373330, 7526669582, 20816208417, 57606623093, 159514679011, 441942381946, 1225049208597, 3397418545998
OFFSET
4,2
COMMENTS
Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same length joined at a single edge and all nodes having degree at most 4. - Andrew Howroyd, May 25 2018
LINKS
Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
PROG
(PARI) \\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(k=1, n\2, d1^(2*k) + d2^k)/4}
C2(n)={sum(k=1, n\2, d2^k + d2^(k-k%2)*d1^(2*(k%2)))/4}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p, e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s, 1)^2*substvec(C1(n-2), [d1, d2], [g(d, 1), g(d, 2)]) + g(s, 2)*substvec(C2(n-2), [d1, d2, d4], [g(d, 1), g(d, 2), g(d, 4)]))} \\ Andrew Howroyd, May 25 2018
CROSSREFS
Cf. A125671.
Sequence in context: A368675 A065506 A330454 * A093652 A200862 A096690
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Aug 13 2006
EXTENSIONS
More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 25 2018
STATUS
approved