[go: up one dir, main page]

login
A121004
Numerators of partial sums of Catalan numbers scaled by powers of 1/(5*5^2)=1/125.
2
1, 126, 15752, 393801, 246125639, 30765704917, 3845713114757, 480714139345054, 12017853483626636, 7511158427266652362, 938894803408331562046, 117361850426041445314536, 14670231303255180664525012
OFFSET
0,2
COMMENTS
Denominators are given under A121005.
This is the third member (p=2) of the second p-family of partial sums of normalized scaled Catalan series CsnII(p):=sum(C(k)/((5^k)*F(2*p+1)^(2*k)),k=0..infinity) with limit F(2*p+1)*(L(2*p+2) - L(2*p+1)*phi) = F(2*p+1)*sqrt(5)/phi^(2*p+1), with C(n)=A000108(n) (Catalan), F(n)= A000045(n) (Fibonacci), L(n) = A000032(n) (Lucas) and phi:=(1+sqrt(5))/2 (golden section).
The partial sums of the above mentioned second p-family are rII(p;n):=sum(C(k)/((5^k)*F(2*p+1)^(2*k)),k=0..n), n>=0, for p=0,1,...
For more details on this p-family and the other three ones see the W. Lang link under A120996.
FORMULA
a(n)=numerator(r(n)) with r(n) := rII(p=2,n) = sum(C(k)/5^(3*k),k=0..n) and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
EXAMPLE
Rationals r(n): [1, 126/125, 15752/15625, 393801/390625,
246125639/244140625, 30765704917/30517578125,...].
MAPLE
The value of the series is lim_{n->infinity}(r(n) := rII(2; n)) = 5*(18 - 11*phi) = 5*sqrt(5)/phi^5 = 1.0081306187560 (maple10, 15 digits).
CROSSREFS
The second member (p=2) is A120786/A120787.
Sequence in context: A180885 A241172 A255172 * A027491 A289326 A295838
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Aug 16 2006
STATUS
approved