[go: up one dir, main page]

login
A120477
Apply partial sum operator 5 times to partition numbers.
4
1, 6, 22, 63, 155, 343, 702, 1352, 2480, 4370, 7445, 12323, 19894, 31421, 48675, 74111, 111099, 164221, 239656, 345670, 493243, 696861, 975518, 1353971, 1864315, 2547941, 3457972, 4662273, 6247169, 8322010, 11024775, 14528914, 19051697
OFFSET
0,2
COMMENTS
In general, if g.f. = 1/(1-x)^m * Product_{k>=1} 1/(1-x^k), then a(n) ~ 2^(m/2 - 2) * 3^((m-1)/2) * n^(m/2 - 1) * exp(Pi*sqrt(2*n/3)) / Pi^m. - Vaclav Kotesovec, Oct 30 2015
LINKS
FORMULA
G.f.: 1/((1-x)^5*Product_{k>=1} (1-x^k)). - Emeric Deutsch, Jul 24 2006
a(n) ~ 9*sqrt(2)*n^(3/2) * exp(Pi*sqrt(2*n/3)) / Pi^5. - Vaclav Kotesovec, Oct 30 2015
MAPLE
with(combinat): g:=1/(1-x)^5/product(1-x^k, k=1..50): gser:=series(g, x=0, 40): seq(coeff(gser, x, n), n=0..37); # Emeric Deutsch, Jul 24 2006
MATHEMATICA
nmax = 50; CoefficientList[Series[1/((1-x)^5 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
CROSSREFS
Column k=6 of A292508.
Sequence in context: A307621 A257200 A258474 * A053739 A280481 A055797
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Jul 21 2006
EXTENSIONS
More terms from Emeric Deutsch, Jul 24 2006
STATUS
approved