[go: up one dir, main page]

login
A120366
Primes p such that p-1 is not a multiple of 3, 4 or 5.
1
2, 3, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 419, 443, 467, 479, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 947, 983, 1019, 1103, 1163, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1427, 1439, 1487, 1499, 1523, 1559
OFFSET
1,1
LINKS
FORMULA
((p-1) mod 3) > 0, ((p-1) mod 4) > 0, ((p-1) mod 5) > 0.
EXAMPLE
347 is a term because none of 3, 4, 5 is a factor of 347 - 1 = 346.
MATHEMATICA
Select[Prime[Range[300]], FreeQ[Mod[#-1, {3, 4, 5}], 0]&] (* Harvey P. Dale, Apr 13 2019 *)
CROSSREFS
Sequence in context: A359406 A199342 A262838 * A371310 A041787 A143853
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 13 2006
STATUS
approved