[go: up one dir, main page]

login
A118702
a(n) = determinant of n X n circulant matrix whose first row is the first n Lucas numbers A000032, from L(0) to L(n-1).
0
2, 3, 18, 0, 8347, -861952, 391524998, -359089453125, 893329160995712, -5499366235206395112, 87687141416511254851323, -3590079701896396800000000000, 381284797406693371431803926245802, -105147887074796935457211770823970013737
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Circulant Matrix.
EXAMPLE
a(4) = 0 because of the singular matrix:
[2, 1, 3, 4]
[4, 2, 1, 3]
[3, 4, 2, 1]
[1, 3, 4, 2].
MATHEMATICA
circ[w_] := NestList[RotateRight, w, Length[w] - 1]; Table[ Det[ circ[ LucasL@ Range[0, n - 1]]], {n, 10}] (* Giovanni Resta, Jun 16 2016 *)
CROSSREFS
A000032 Lucas numbers (beginning at 2): L(n) = L(n-1) + L(n-2). A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.
Sequence in context: A367686 A132534 A263048 * A073524 A130226 A287621
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 20 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 16 2016
STATUS
approved