OFFSET
0,4
COMMENTS
FORMULA
Since T + T^-1 = C + C^-1, then [T^-1](n,k) = (1+(-1)^(n-k))*C(n,k) - T(n,k) is a formula for the matrix inverse T^-1 = A118438.
EXAMPLE
Triangle begins:
1;
1, 1;
-3, 2, 1;
-11, 15, 3, 1;
25,-44,-18, 4, 1;
41,-115,-110, 50, 5, 1;
-43, 246, 375,-220,-45, 6, 1;
29, 315, 861,-805,-385, 105, 7, 1;
-335, 232,-1204, 2296, 1750,-616,-84, 8, 1;
-1199, 3033, 1044, 3780, 5166,-2898,-924, 180, 9, 1;
...
The matrix log, log(T) = A118441, starts:
0;
1, 0;
-4, 2, 0;
-12, 12, 3, 0;
32,-48,-24, 4, 0;
80,-160,-120, 40, 5, 0;
...
where matrix square, log(T)^2, is a single diagonal:
0;
0,0;
2,0,0;
0,6,0,0;
0,0,12,0,0;
0,0,0,20,0,0;
...
MATHEMATICA
nmax = 12;
h[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2] - Quotient[k, 2]+n-k);
H = Table[h[n, k], {n, 0, nmax}, {k, 0, nmax}];
Cn = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, nmax}];
Tn = H.Inverse[Cn].H;
T[n_, k_] := Tn[[n+1, k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2024 *)
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1)*(-1)^(r\2- (c-1)\2+r-c))), C=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1)))); (M*C^-1*M)[n+1, k+1]}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Apr 28 2006
STATUS
approved