OFFSET
1,2
COMMENTS
Other roots of the equation x^7 - x^6 - ... - x - 1 see in A239566. For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that we have: c + c^(-7) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 07 2022
REFERENCES
Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
LINKS
S. Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
Eric Weisstein's World of Mathematics, Heptanacci Number
Eric Weisstein's World of Mathematics, Heptanacci Constant
EXAMPLE
1.9919641966050350210...
MATHEMATICA
RealDigits[x/.FindRoot[x^7+Total[-x^Range[0, 6]]==0, {x, 2}, WorkingPrecision-> 110]][[1]] (* Harvey P. Dale, Dec 13 2011 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 27 2006
STATUS
approved