OFFSET
0,2
COMMENTS
Let b_j(n) = 2*n*(n/2)^(2^(-j))/(1+2^(-j)). For any positive integers r and n, we have (n^2+n)/2 < a(n) < b_r(n) + Sum_{j=1..r} b_j(n). - Colin Defant, Sep 15 2015
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1000
MATHEMATICA
a = {1}; Do[k = 1; While[Nand[MemberQ[a, k], k >= i], k++]; AppendTo[a, a[[i]] + k], {i, 52}]; a (* Michael De Vlieger, Sep 19 2017 *)
PROG
(PARI) lista(nn) = {va = vector(nn); va[1] = 1; for (k=2, nn, vs = select(x->(x >= k-1), va, 1); va[k] = va[k-1] + va[vs[1]]; ); va; } \\ Michel Marcus, Oct 09 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Apr 10 2006
EXTENSIONS
More terms from Adam Panagos (adam.panagos(AT)gmail.com), May 10 2006
More terms from Joshua Zucker, Jul 27 2006
STATUS
approved