[go: up one dir, main page]

login
A117751
Irregular triangle with those partition numbers A000041( n*(2*m-1)+m+2 ) in row n which are congruent to 0 (mod 2m-1), m=1..n.
0
5, 7, 42, 11, 15, 231, 22, 44583, 30, 1002, 147273, 7089500, 42, 451276, 30167357, 56, 118114304, 77, 44108109, 431149389, 101, 9289091, 1482074143, 135, 23338469, 4835271870, 176, 37338, 15065878135, 231, 63261, 133230930, 3397584011986773, 297
OFFSET
1,1
REFERENCES
Robert Kanigel, The Man Who Knew Infinity, Washington Square Press, New York, 1991, page 302.
EXAMPLE
The table starts in row n=1 as
5;
7, 42;
11;
15, 231;
22, 44583;
30, 1002, 147273, 7089500;
42, 451276, 30167357;
56, 118114304;
77, 44108109, 431149389;
101, 9289091, 1482074143;
MATHEMATICA
b = Table[Flatten[Table[If[Mod[PartitionsP[(2*n - 1)* m + n + 2], 2*n - 1] == 0, PartitionsP[(2*n - 1)*m + n + 2], {}], { n, 1, m}]], {m, 1, 10}] Flatten[b]
CROSSREFS
Cf. A000041.
Sequence in context: A123781 A120298 A178342 * A093526 A098512 A234040
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Apr 14 2006
EXTENSIONS
Keyword:tabf, offset, more values and detailed definition from Assoc. Eds. of the OEIS, Jun 15 2010
STATUS
approved