[go: up one dir, main page]

login
A117433
Number of planar partitions of n with all part sizes distinct.
26
1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 149, 187, 243, 321, 413, 527, 735, 895, 1165, 1467, 1885, 2335, 2997, 3853, 4765, 5977, 7473, 9269, 11531, 14255, 17537, 22201, 26897, 33233, 40613, 50027, 60637, 74459, 89963, 109751, 134407, 162117, 195859
OFFSET
0,4
COMMENTS
Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 100 terms from Franklin T. Adams-Watters)
OEIS Wiki, Plane partitions
FORMULA
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).
EXAMPLE
From Gus Wiseman, Nov 15 2018: (Start)
The a(10) = 35 strict plane partitions (A = 10):
A 64 73 82 532 91 541 631 721 4321
.
9 54 63 72 432 8 53 71 431 7 43 52 61 421 6 42 51
1 1 1 1 1 2 2 2 2 3 21 3 3 3 4 31 4
.
7 6 5 43 42 5 41
2 3 4 2 3 3 3
1 1 1 1 1 2 2
.
4
3
2
1
(End)
MAPLE
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
end:
g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:
a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 18 2012
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], UnsameQ@@DeleteCases[Join@@prs2mat[#], 0], And@@(OrderedQ[#, Greater]&/@prs2mat[#]), And@@(OrderedQ[#, Greater]&/@Transpose[prs2mat[#]])]&]], {n, 5}] (* Gus Wiseman, Nov 15 2018 *)
zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[Plus, b[n, i - 1], If[i > n, {}, Join[{0}, b[n - i, i - 1]]], 0]]];
g[n_] := g[n] = If[n < 2, 1, (n - 1)*g[n - 2] + g[n - 1]];
a[n_] := With[{bn = b[n, n]}, Sum[bn[[i]]*g[i - 1], {i, 1, Length[bn]}]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Mar 16 2006, Apr 01 2008
STATUS
approved