[go: up one dir, main page]

login
A116809
Number of permutations of length n which avoid the patterns 1432, 2134, 2143.
1
1, 2, 6, 21, 76, 273, 971, 3439, 12172, 43098, 152649, 540730, 1915445, 6785029, 24034177, 85134498, 301565746, 1068215101, 3783864272, 13403320805, 47477655647, 168176809999, 595721056436, 2110181402286, 7474749309041
OFFSET
1,2
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 189.
FORMULA
G.f.: A(x) = -{(x-1)^4x}/{x^5-5x^4+13x^3-12x^2+6x-1}
MAPLE
f:= gfun:-rectoproc({a(n)-5*a(n+1)+13*a(n+2)-12*a(n+3)+6*a(n+4)-a(n+5), a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 6, a(4) = 21, a(5) = 76}, a(n), remember):
map(f, [$1..30]); # Robert Israel, Jun 02 2016
MATHEMATICA
LinearRecurrence[{6, -12, 13, -5, 1}, {1, 2, 6, 21, 76}, 25] (* Jean-François Alcover, Sep 19 2018 *)
CROSSREFS
Sequence in context: A294817 A294772 A294818 * A116819 A294819 A294820
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved