%I #13 Apr 06 2023 06:23:22
%S 8,216,27000,9261000,12326391000,27081081027000,133049351085651000,
%T 912585499096480209000,11103427767506874702903000,
%U 270801499821725167129101267000,8067447481189014453943055845197000
%N Denominator of Sum_{i=1..n} 1/prime(i)^3.
%C Numerators are in A115963.
%C Also the primorials cubed. - _Reikku Kulon_, Sep 18 2008
%F a(n) = denominator of Sum_{i=1..n} 1/A000040(i)^3.
%F a(n) = A002110(n)^3. - _Reikku Kulon_, Sep 18 2008
%e 1/8, 35/216, 4591/27000, 1601713/9261000, 2141141003/12326391000, 4716413174591/27081081027000.
%t a[n_]:=Product[Prime[i]^3, {i, 1, n}]; (* _Vladimir Joseph Stephan Orlovsky_, Dec 05 2008 *)
%Y Cf. A115963 (numerators).
%Y Cf. A024451 (numerator of sum_{i=1..n} 1/prime(i)), A002110 (primorial, also denominator of sum_{i=1..n} 1/prime(i)), A061015 (numerator of sum_{i=1..n} 1/prime(i)^2).
%Y Cf. A000040, A075986/A075987, A106830/A034386.
%Y Cf. A061742, A100778. - _Reikku Kulon_, Sep 18 2008
%K easy,frac,nonn
%O 1,1
%A _Jonathan Vos Post_, Mar 14 2006