[go: up one dir, main page]

login
A115874
Integers i such that 19*i = 55 X i.
4
0, 7, 14, 28, 31, 56, 62, 63, 112, 119, 124, 126, 127, 224, 238, 248, 252, 254, 255, 448, 455, 476, 496, 504, 508, 510, 511, 896, 910, 952, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1820, 1823, 1904, 1911, 1984, 1991, 2016, 2032, 2040, 2044
OFFSET
1,2
COMMENTS
Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
From Robert Israel, Apr 08 2018: (Start)
n is in the sequence if and only if 2*n is.
If n is in the sequence, then so is (2^k+1)*n if 2^k > n.
Contains 2^k-1 for k >= 5. (End)
MAPLE
X:= proc(a, b) local A, B, C;
A:= convert(a, base, 2);
B:= convert(b, base, 2);
C:= expand(add(A[i]*x^(i-1), i=1..nops(A))*add(B[i]*x^(i-1), i=1..nops(B))) mod 2;
eval(C, x=2)
end proc:
select(t -> 19*t = X(55, t), [$0..10^4]); # Robert Israel, Apr 08 2018
MATHEMATICA
X[a_, b_] := Module[{A, B, C},
A = Reverse@IntegerDigits[a, 2];
B = Reverse@IntegerDigits[b, 2];
C = Expand[
Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
PolynomialMod[C, 2] /. x -> 2];
Select[Range[0, 10^4], 19*# == 55~X~#&] (* Jean-François Alcover, Jan 04 2022, after Robert Israel *)
CROSSREFS
Row 19 of A115872. Superset of A115876? A115875 shows this sequence in binary.
Sequence in context: A232790 A095894 A104599 * A083495 A185066 A089644
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 07 2006
EXTENSIONS
Offset corrected by Robert Israel, Apr 08 2018
STATUS
approved