[go: up one dir, main page]

login
A115866
a(n) = g(n,n,n) where g(a, b, c) is defined as follows: if a = 0 or b = 0 or c = 0 then return 1 otherwise return g(a, b, c-1) + g(a, b-1, c) + g(a-1, b, c) + g(a, b-1, c-1) + g(a-1, b, c-1) + g(a-1, b-1, c) + g(a-1, b-1, c-1).
3
1, 7, 157, 5419, 220561, 9763807, 454635973, 21894817147, 1080094827649, 54250971690007, 2763339510402637, 142338478909290187, 7399210542653679985, 387578046480606144079, 20433042381373273363477, 1083193405190852829195259, 57697563083258107660231681
OFFSET
0,2
COMMENTS
A generalization of the recurrence in A001850. The original description of this sequence was the same as that of A126086. The correct explanation for these terms was provided by Nick Hobson, Mar 03 2007.
LINKS
FORMULA
D-finite with recurrence: 2*(n-1)^2*(2*n-1)*(243*n^5 - 3159*n^4 + 16254*n^3 - 41325*n^2 + 51838*n - 25620)*a(n) = (53703*n^8 - 887922*n^7 + 6273882*n^6 - 24692601*n^5 + 59070956*n^4 - 87717383*n^3 + 78694087*n^2 - 38816698*n + 8003688)*a(n-1) + (94527*n^8 - 1549611*n^7 + 10848681*n^6 - 42278007*n^5 + 100087538*n^4 - 147021644*n^3 + 130465402*n^2 - 63678226*n + 13003980)*a(n-2) - (31833*n^8 - 541890*n^7 + 3945213*n^6 - 16007835*n^5 + 39486422*n^4 - 60435299*n^3 + 55812796*n^2 - 28273516*n + 5965068)*a(n-3) + (n-3)*(3159*n^7 - 48114*n^6 + 301212*n^5 - 1002003*n^4 + 1908157*n^3 - 2073535*n^2 + 1184960*n - 272792)*a(n-4) - 2*(n-4)^2*(n-3)*(243*n^5 - 1944*n^4 + 6048*n^3 - 9087*n^2 + 6529*n - 1769)*a(n-5). - Vaclav Kotesovec, Nov 27 2016
a(n) ~ (12*2^(2/3)+15*2^(1/3)+19)^n / (2^(4/3)*3^(1/2)*Pi*n). - Vaclav Kotesovec, Nov 27 2016
MAPLE
g():= seq(convert(n, base, 2)[1..3], n=9..15):
b:= proc(l) option remember;
`if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))
end:
a:= n-> b([n$3]):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 14 2015
MATHEMATICA
g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 3]], {n, 2^3 + 1, 2^4 - 1}];
b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]];
a[n_] := b[Table[n, {3}]];
a /@ Range[0, 25] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A263159.
Sequence in context: A197979 A203584 A073605 * A197766 A009703 A014385
KEYWORD
nonn
AUTHOR
Al Zimmermann, Apr 02 2006
EXTENSIONS
Edited by N. J. A. Sloane following email from Nick Hobson, Mar 03 2007
More terms from Alois P. Heinz, Sep 30 2015
STATUS
approved