[go: up one dir, main page]

login
A115413
Expansion of (x - 1)/(1 - x^2 + x^3 + x^4 - x^5).
0
-1, 1, -1, 2, -1, 1, -1, -1, 1, -2, 4, -3, 4, -4, 1, -1, -2, 6, -6, 10, -11, 8, -9, 3, 4, -7, 18, -23, 24, -30, 22, -13, 5, 19, -34, 49, -71, 69, -67, 57, -16, -16, 63, -124, 152, -187, 197, -152, 108, -10, -124, 231, -374, 473, -491, 492, -359, 136, 113, -488, 828, -1096, 1339, -1323, 1119, -738, 7, 805, -1697, 2655
OFFSET
0,4
FORMULA
G.f.: (x - 1)/(1 - x^2 + x^3 + x^4 - x^5).
a(n) = a(n-2) - a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 28 2022
MATHEMATICA
CoefficientList[Series[(x - 1)/(1 - x^2 + x^3 + x^4 - x^5), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jul 28 2022 *)
CROSSREFS
Sequence in context: A357139 A046214 A232088 * A292435 A319094 A069283
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Mar 08 2006
EXTENSIONS
Edited by N. J. A. Sloane, Mar 08 2006
STATUS
approved