[go: up one dir, main page]

login
A115332
E.g.f: exp(x/(1-5*x))/sqrt(1-25*x^2).
1
1, 1, 36, 256, 11236, 181476, 9461776, 251412736, 15256202256, 574194155536, 39891552832576, 1953973812658176, 153336819846991936, 9264773325882888256, 812060124489852846336, 58352827798669641650176
OFFSET
0,3
COMMENTS
Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
FORMULA
Equals term-by-term square of A115331 which has e.g.f.: exp(x+5/2*x^2).
D-finite with recurrence: a(n) = (5*n-4)*a(n-1) + 5*(n-1)*(5*n-4)*a(n-2) - 125*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, Jun 26 2013
a(n) ~ 1/2*exp(2*sqrt(n/5)-n-1/10)*5^n*n^n. - Vaclav Kotesovec, Jun 26 2013
MATHEMATICA
CoefficientList[Series[E^(x/(1-5*x))/Sqrt[1-25*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
PROG
(PARI) a(n)=local(m=5); n!*polcoeff(exp(x/(1-m*x+x*O(x^n)))/sqrt(1-m^2*x^2+x*O(x^n)), n)
CROSSREFS
Cf. A115331.
Sequence in context: A247840 A017342 A341544 * A133072 A115223 A135181
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2006
STATUS
approved