[go: up one dir, main page]

login
A115293
Row sums of correlation triangle for (1+x)^3/(1-x).
3
1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, 1312, 1616, 1952, 2320, 2720, 3152, 3616, 4112, 4640, 5200, 5792, 6416, 7072, 7760, 8480, 9232, 10016, 10832, 11680, 12560, 13472, 14416, 15392, 16400, 17440, 18512, 19616, 20752, 21920, 23120, 24352
OFFSET
0,2
COMMENTS
Row sums of number triangle A115292.
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-2) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007
FORMULA
G.f.: A(x) = (1+x)^5/(1-x)^3.
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j).
From Peter Bala, Sep 26 2021: (Start)
a(n) = Sum_{k = 0..n} binomial(5,n-k)*binomial(k+2,k).
A262732(n) = [x^n] A(x)^n. (End)
MAPLE
seq(add(binomial(5, n-k)*binomial(k+2, k), k = 0..n), n = 0..40); # Peter Bala, Sep 26 2021
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 8, 31, 80, 160, 272}, 50] (* Harvey P. Dale, Dec 03 2018 *)
PROG
(PARI) a(n) = sum(k = 0, n, binomial(5, n-k)*binomial(k+2, k)); \\ Michel Marcus, Oct 01 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jan 19 2006
STATUS
approved