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Let E(q) denote the Euler product
∏
n≥1

(1− qn) . In [1, Theorem 1], the authors

�nd identities satis�ed by the coe�cients in the series expansion of E(q)r for
various values of r. In this note we �nd similar identities satis�ed by the
coe�cients in the series expansion of E(q)E(−q) and state the corresponding
result for the coe�cients in the series expansion of (E(q)E(−q))3.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The expansion of E(q)E(−q) begins

E(q)E(−q) = 1− 3q2 + q4 + 2q6 + 2q8 − q10 − 4q12 + q14 + · · · .

The coe�cient sequence [1,−3, 1, 2, 2,−1,−4, 1, ...] is A115110.

Theorem 1. Let p be a prime of the form 4k + 3. Let E(q)E(−q) =∑
n≥0

a(n)qn. Then

(i)

a

(
p2n+

p2 − 1

12

)
= εa(n) (1)

where

ε =

{
1 p ≡ 7 or 23 (mod 24)

−1 p ≡ 11 or 19 (mod 24)
(2)

(ii) If n > 0 is coprime to p then

a

(
pn+

p2 − 1

12

)
= 0. (3)

Proof. (i) We recall Euler's series expansion of the Euler product (see, for
example, [2]):

E(q) =
∑
m∈Z

(−1)mqm(3m+1)/2. (4)

We thus have

E(q)E(−q) =
∑
m,n∈Z

(−1)m+n+n(3n+1)/2qm(3m+1)/2+n(3n+1)/2. (5)
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The coe�cient a(N) of the term qN in (5) is given by

a(N) =
∑

(m,n)∈S(N)

t(m,n), (6)

where

t(m,n) = (−1)m+n+n(3n+1)/2 (7)

and

S(N) =

{
(m,n) | m(3m+ 1)

2
+
n(3n+ 1)

2
= N, m, n ∈ Z

}
. (8)

Since

m(3m+ 1)

2
+
n(3n+ 1)

2
= N ⇔

12m(3m+ 1) + 12n(3n+ 1) = 24N ⇔

(6m+ 1)2 + (6n+ 1)2 = 24N + 2,

we can rede�ne the set S(N) in (8) in the more convenient form

S(N) =
{
(m,n) | (6m+ 1)2 + (6n+ 1)2 = 24N + 2, m, n ∈ Z

}
. (9)

Notice that as an immediate consequence we have

S

(
p2N +

p2 − 1

12

)
=

{
(m,n) | (6m+ 1)2 + (6n+ 1)2 = p2(24N + 2),m, n ∈ Z

}
.

(10)

We de�ne a mapping on pairs of integers (m,n) by

φ(m,n) =

(
p∗m+

p∗ − 1

6
, p∗n+

p∗ − 1

6

)
. (11)

where

p∗ =

{
p p ≡ 7 or 19 (mod 24)

−p p ≡ 11 or 23 (mod 24)
(12)

Notice that p∗ is of the form 6k + 1 for some integer k. We shall abuse
notation and also use the same symbol φ to denote the integer mapping
φ(m) = p∗m+ (p∗ − 1)/6.
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One easily checks from (7) that

t(φ(m,n)) = εt(m,n), (13)

where ε = 1 if p ≡ 7 or 23 (mod 24) and ε = −1 if p ≡ 11 or 19 (mod 24). We

claim that φ maps the set S(N) bijectively onto the set S
(
p2N + p2−1

12

)
. The

desired result a
(
p2N + p2−1

12

)
= εa(N) will follow from this since by (6) and

(13)

εa(N) =
∑

(m,n)∈S(N)

εt(m,n),

=
∑

(m,n)∈S(N)

t(φ(m,n))

=
∑

φ(m,n)∈S(p2N+(p2−1)/12)

t(φ(m,n))

= a

(
p2N +

p2 − 1

12

)

by (6).

Firstly, let us prove that φ maps S(N) into S
(
p2N + p2−1

12

)
. Suppose

(m,n) ∈ S(N). We have by (11)

(6φ(m) + 1)2 + (6φ(n) + 1)2 = (6p∗m+ p∗)2 + (6p∗n+ p∗)2

= p2
{
(6m+ 1)2 + (6n+ 1)2

}
= p2(24N + 2)

by (9). Hence by (10), the integer pair (φ(m), φ(n)) belongs to the set

S
(
p2N + p2−1

12

)
. Thus φ is an injective mapping.

Next we show that φ maps S(N) onto S
(
p2N + p2−1

12

)
. Suppose now

(m,n) ∈ S
(
p2N + p2−1

12

)
. By (10) we have

(6m+ 1)2 + (6n+ 1)2 = p2(24N + 2). (14)

Therefore

(6m+ 1)2 + (6n+ 1)2 ≡ 0 (mod p). (15)

It follows from Lemma 1 below that both 6m+ 1 and 6n+ 1 are divisible by p.
Since p∗ is of the form 6k + 1, it is easy to check that we can write 6m+ 1 =
p∗(6m′ + 1) and 6n+ 1 = p∗(6n′ + 1) for some integers m′ and n′. One easily
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checks from (11) that φ(m′, n′) = (m,n). From (14), we have (6m′ + 1)2+
(6n′ + 1)2 = 24N + 2, and by (9) this is the condition that (m′, n′)∈ S(N).

Thus φ : S(N)→ S
(
p2N + p2−1

12

)
is an onto map and the proof of part (i) of

the theorem is complete.

(ii) Let now N = pn+
p2 − 1

12
, where n > 0 is coprime to p. We show a(N) = 0.

By (6) and (9)

a(N) =
∑

(m,n)∈S(N)

t(m,n),

where

S(N) =
{
(m,n) | (6m+ 1)2 + (6n+ 1)2 = p(24n+ 2p), m, n ∈ Z

}
.

We claim S(N) is the empty set and so a(N) = 0. Suppose on the contrary
there exists a pair (m,n) ∈ S(N). Then

(6m+ 1)2 + (6n+ 1)2 = p(24n+ p). (16)

It follows that

(6m+ 1)2 + (6n+ 1)2 ≡ 0 (mod p).

Hence, by Lemma 1 below, both 6m+ 1 and 6n+ 1 are divisible by p. Then
by (16), p2 divides p(24n+ 2p), and hence p divides n, contradicting the
assumption that n and p are coprime.�

Lemma 1. Let p be a prime congruent to 3 (mod 4). Then for integer x and

y,

x2 + y2 ≡ 0 (mod p), (17)

i�
x ≡ 0 (mod p) and y ≡ 0 (mod p).

Proof. The reverse implication is immediate. To prove the forward
implication we recall the result from elementary number theory that −1 is a
quadratic nonresidue of all primes ≡ 3 (mod 4). Suppose y is not divisible by
p. Then z = x/y in Zp would give a solution to the congruence

z2 + 1 ≡ 0 (mod p),

that is to say, -1 is a quadratic residue mod p, a contradiction. Thus we must
have y ≡ 0 (mod p). It then follows from (17) that x2 ≡ 0 (mod p) and hence
also x ≡ 0 (mod p).�
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By making use of Jacobi's identity E(q)3 =
∑

m≥0
(−1)m(2m+ 1)qm(m+1)/2, a

proof along the lines of that in Theorem 1 can be given for the following result.

Theorem 2. Let p be a prime of the form 4k + 3. Let (E(q)E(−q))3 =∑
n≥0

a3(n)q
n.Then

(i)

a3

(
p2n+

p2 − 1

4

)
= εp2a(n) (18)

where

ε =

{
1 p ≡ 7 or 23 (mod 24)

−1 p ≡ 11 or 19 (mod 24)
(19)

(ii) If n > 0 is coprime to p then

a3

(
pn+

p2 − 1

4

)
= 0. (20)

�
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