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Let E(q) denote the Euler product H (1 —¢™).In[1, Theorem 1], the authors
n>1

find identities satisfied by the coefficients in the series expansion of E(q)" for

various values of r. In this note we find similar identities satisfied by the

coefficients in the series expansion of E(q)E(—q) and state the corresponding

result for the coefficients in the series expansion of (E(q)E(—q))3.

The expansion of E(q)E(—q) begins
E(@E(—q) =1-3"+¢"+2¢° +2¢° — ¢" —4¢"” + ¢"* +--- .
The coefficient sequence [1,-3,1,2,2,—1,—4,1,...] is A115110.

Theorem 1. Let p be a prime of the form 4k + 3. Let E(q)E(—q) =
Z a(n)q". Then

n>0

(i)

where

. 1 p=7or 23 (mod 24) @)
] =1 p=11or 19 (mod 24)
(ii) If n > 0 is coprime to p then
2
-1y
a(pn+ 12 )—0. (3)

Proof. (i) We recall Euler’s series expansion of the Euler product (see, for
example, [2]):

E(q) = ) (-1mgm@mtDe, (4)
meZ
We thus have
E(q)E(—q) — Z (_1)m+n+n(3n+1)/2qm(3m+1)/2+n(3n+1)/2- (5)
m,n€”z


https://oeis.org/A115110

The coefficient a(N) of the term ¢V in (5) is given by

a(N) = > t(myn), (6)
(m,n)ES(N)
where
Hmn) = (<12 ")
and
S(V) {(m,n) m(3”;+1)+"(3"2“):N, m,nGZ}. )
Since

m(3m+ 1) n n(3n+1)

= N &
2 2
2mBm+1)+12n(3n+1) = 24N &
(6m +1)> 4 (6n+1)* = 24N + 2,

we can redefine the set S(INV) in (8) in the more convenient form
S(N) = {(mn)| (6bm—+1)>+(6n+1)>=24N+2, m,neZ}. (9)

Notice that as an immediate consequence we have

2 _
S<p2N+p121> = {(m,n)| (6m+1)*+ (6n+1)*> = p*(24N +2),m,n € Z} .

(10)

We define a mapping on pairs of integers (m,n) by

s = (e Eot s 1) (1)

where
. p p=T7orl9 (mod 24)
p= —p p=11or 23 (mod 24)
Notice that p* is of the form 6k + 1 for some integer k. We shall abuse

notation and also use the same symbol ¢ to denote the integer mapping
¢(m) =p*m+ (p* —1)/6.



One easily checks from (7) that

t(¢(m,n)) = et(m,n), (13)

where e =1 if p =7 or 23 (mod 24) and e = —1 if p = 11 or 19 (mod 24). We
claim that ¢ maps the set S(IV) bijectively onto the set S (pZN + p2_1> . The

2
desired result a (pQN + %) = ea(N) will follow from this since by (6) and
(13)

ea(N) = Z et(m,n),

(m,n)ES(N)

= Y. He(m,n)

(m,n)ES(N)

= > t(p(m,n))

#(m,n)€S(p>N+(p>—1)/12)

2
B CL<p2N+p12

by (6).
Firstly, let us prove that ¢ maps S(N) into S (p2N + pigl) . Suppose
(m,n) € S(N). We have by (11)
(6p(m) +1)* + (66(n) +1)* = (6p"m+p*)* + (6p"n +p")
= p*{(6m+1)*+ (6n+1)*}

= p?(24N +2)
by (9). Hence by (10), the integer pair (¢(m), ¢(n)) belongs to the set

S (p2N + pi;). Thus ¢ is an injective mapping.

1

Next we show that ¢ maps S(N) onto S (pQN 4 2

5 ) . Suppose now
(m,n) €S (p2N+ pi;). By (10) we have

(6m+1)2+(6n+1)> = p*(24N +2). (14)
Therefore
(6m+1)2+(6n+1)> = 0(mod p). (15)

It follows from Lemma 1 below that both 6m + 1 and 6n + 1 are divisible by p.
Since p* is of the form 6k + 1, it is easy to check that we can write 6m + 1 =
p*(6m’ + 1) and 6n + 1 = p*(6n' 4+ 1) for some integers m’ and n’. One easily



checks from (11) that ¢(m’,n') = (m,n). From (14), we have (6m’ + 1)+
(6n' +1)% = 24N + 2, and by (9) this is the condition that (m’,n’)e S(N).

2— . -
Thus ¢ : S(N) —» S (pQN + %) is an onto map and the proof of part (i) of
the theorem is complete.

2
-1

(ii) Let now N = pn+ pT’ where n > 0 is coprime to p. We show a(N) = 0.
By (6) and (9)

a(N) = Y i(m,n),

(m,n)ES(N)
where
S(N) = {(m,n)| (6m+1)*+ (6n+1)> =p(24n+2p), mn€Z}.

We claim S(N) is the empty set and so a(/N) = 0. Suppose on the contrary
there exists a pair (m,n) € S(INV). Then

(6m+1)2 + (6n+ 1) = p(24n + p). (16)
It follows that
(6m+1)> 4 (6n+1)> = 0 (mod p).

Hence, by Lemma 1 below, both 6m + 1 and 6n + 1 are divisible by p. Then
by (16), p? divides p(24n + 2p), and hence p divides n, contradicting the
assumption that n and p are coprime. [

Lemma 1. Let p be a prime congruent to 3 (mod 4). Then for integer x and
Y,

22 +y*> = 0(mod p), (17)

iff
2 =0 (mod p) and y = 0 (mod p).

Proof. The reverse implication is immediate. To prove the forward
implication we recall the result from elementary number theory that —1 is a
quadratic nonresidue of all primes = 3 (mod 4). Suppose y is not divisible by
p. Then z = x/y in Z, would give a solution to the congruence

2241 = 0(mod p),

that is to say, -1 is a quadratic residue mod p, a contradiction. Thus we must
have y = 0 (mod p). It then follows from (17) that #? = 0 (mod p) and hence
also z = 0 (mod p). O



By making use of Jacobi’s identity E(q)® = Z >0(—1)m(2m 4+ 1)gmm+D/2 5

proof along the lines of that in Theorem 1 can be given for the following result.

Theorem 2. Let p be a prime of the form 4k + 3. Let (E(q)E(—q))° =
Z as(n)q".Then

n>0

(i)

as <p2n + p24_ 1) — pa(n) (18)

where

€= { ,11 ; j 1710;2139(8100%12244)) (19)
(ii) If n > 0 is coprime to p then
as (pn+p24l> =0. (20)
O
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