[go: up one dir, main page]

login
A115032
Expansion of (5-14*x+x^2)/((1-x)*(x^2-18*x+1)).
8
5, 81, 1445, 25921, 465125, 8346321, 149768645, 2687489281, 48225038405, 865363202001, 15528312597605, 278644263554881, 5000068431390245, 89722587501469521, 1610006506595061125, 28890394531209630721, 518417095055178291845, 9302617316461999622481
OFFSET
0,1
COMMENTS
Relates squares of numerators and denominators of continued fraction convergents to sqrt(5).
Sequence is generated by the floretion A*B*C with A = + 'i - 'k + i' - k' - 'jj' - 'ij' - 'ji' - 'jk' - 'kj' ; B = - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' ; C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' (apart from a factor (-1)^n)
Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B*C].
The sequence a(n-1), n >= 0, with a(-1) = 1, is also the curvature of circles inscribed in a special way in the larger segment of a circle of radius 5/4 (in some units) cut by a chord of length 2. For the smaller segment, the analogous curvature sequence is given in A240926. For more details see comments on A240926. See also the illustration in the present sequence, and the proof of the coincidence of the curvatures with a(n-1) in part I of the W. Lang link. - Kival Ngaokrajang, Aug 23 2014
FORMULA
sqrt(a(2*n)) = sqrt(5)*A007805(n) = sqrt(5)*Fibonacci(6*n+3)/2 = sqrt(5)*A001076(2*n+1); sqrt(a(2*n+1)) = A023039(2*n+1) = A001077(2*n).
From Wolfdieter Lang, Aug 22 2014: (Start)
O.g.f.: (5-14*x+x^2)/((1-x)*(x^2-18*x+1)) (see the name).
a(n) = (9*F(6*(n+1)) - F(6*n) + 8)/16, n >= 0 with F(n) = A000045(n) (Fibonacci). From the partial fraction decomposition of the o.g.f.: (1/2)*((9 - x)/(1 - 18*x + x^2) + 1/(1 - x)). For F(6*n)/8 see A049660(n). a(-1) = 1 with F(-6) = -F(6) = -8.
a(n) = (9*S(n, 18) - S(n-1, 18) + 1)/2, with the Chebyshev S-polynomials (see A049310). From A049660.
a(n) = (A023039(n+1) + 1)/2.
(End)
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - Colin Barker, Aug 23 2014
From Wolfdieter Lang, Aug 24 2014: (Start)
a(n) = 18*a(n-1) - a(n-2) - 8, n >= 1, a(-1) = 1, a(0) = 5. See the Chebyshev S-polynomial formula above.
The o.g.f. for the sequence a(n-1) with a(-1) = 1, n >= 0, [1, 5, 81, 1445, ..] is (1-14*x+5*x^2)/((1-x)*(1-18*x+x^2)).
(See the Colin Barker formula from Aug 04 2014 in the history of A240926.) (End)
EXAMPLE
G.f. = 5 + 81*x + 1445*x^2 + 25921*x^3 + 465125*x^4 + 8346321*x^5 + ...
MAPLE
seq((9*combinat:-fibonacci(6*(n+1)) - combinat:-fibonacci(6*n) + 8)/16, n = 0 .. 20); # Robert Israel, Aug 25 2014
MATHEMATICA
LinearRecurrence[{19, -19, 1}, {5, 81, 1445}, 30] (* Harvey P. Dale, Nov 14 2014 *)
CoefficientList[Series[(5 - 14*x + x^2)/((1 - x)*(x^2 - 18*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
PROG
(PARI) Vec((5-14*x+x^2)/((1-x)*(x^2-18*x+1)) + O(x^20)) \\ Michel Marcus, Aug 23 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 26 2006
EXTENSIONS
More terms from Michel Marcus, Aug 23 2014
Edited (comment by Kival Ngaokrajang rewritten, Chebyshev index link added) by Wolfdieter Lang, Aug 26 2014
Partially edited by Jon E. Schoenfield and N. J. A. Sloane, Mar 15 2024
STATUS
approved