[go: up one dir, main page]

login
A114568
a(n) = 4694*a(n-2) + 9380*a(n-3) for n >= 3 with a(0) = 0 and a(1) = a(2) = 1.
0
0, 1, 1, 4694, 14074, 22043016, 110093076, 103601931224, 723540388824, 487340138218336, 4368084700020976, 2294361417644038304, 25075040078386453024, 10810705128907312553856, 139223348225447089786176, 50980653751026190057165184, 754918810679399231211479424
OFFSET
0,4
FORMULA
From Colin Barker, Jan 21 2013: (Start)
a(n) = 4694*a(n-2) + 9380*a(n-3) for n >= 3 with a(0) = 0 and a(1) = a(2) = 1.
G.f.: -x * (x + 1) / ((2*x + 1) * (4690*x^2 + 2*x - 1)). (End)
MAPLE
with(LinearAlgebra);
M := Matrix([[0, 1, 0], [0, 0, 1], [9380, 4694, 0]]);
w := proc(n) option remember;
if n = 0 then Matrix([[0], [1], [1]]); elif n >= 1 then
MatrixMatrixMultiply(M, w(n - 1)); end if;
end proc;
seq(w(n)[1, 1], n = 0..40); # Petros Hadjicostas, Nov 20 2019
MATHEMATICA
M = {{0, 1, 0}, {0, 0, 1}, {9380, 4694, 0}};
w[0] = {{0}, {1}, {1}};
w[n_] := w[n] = M.w[n - 1];
a = Flatten[Table[w[n][[1]], {n, 0, 25}]]; (* Modified by Petros Hadjicostas, Nov 20 2019 *)
LinearRecurrence[{0, 4694, 9380}, {0, 1, 1}, 20] (* Harvey P. Dale, Apr 11 2020 *)
CROSSREFS
Sequence in context: A204073 A256808 A114542 * A251135 A237699 A235022
KEYWORD
nonn,less,easy
AUTHOR
Roger L. Bagula, Feb 16 2006
EXTENSIONS
More terms from Colin Barker, Jan 21 2013
Edited and new name using formula from Colin Barker, Joerg Arndt, Nov 21 2019
STATUS
approved