[go: up one dir, main page]

login
A114264
n(k) is the minimum number that require at least k to make Prime[n]+2*Prime[n+k] a prime.
1
2, 10, 9, 7, 8, 40, 80, 28, 34, 73, 52, 174, 86, 105, 127, 161, 326, 225, 356, 154, 245, 394, 362, 350, 279, 586, 846, 321, 929, 1822, 1683, 1208, 1091, 2025, 947, 2108, 1361, 3181, 372, 2774, 1898, 3785, 3676, 2194, 6447, 2919, 3590, 7092, 4955, 2474, 19409
OFFSET
1,1
EXAMPLE
Prime[2]+2*Prime[2+1]=3+2*5=13 is prime, so n(1)=2;
Prime[3]+2*Prime[3+1]=5+2*7=19 is prime, not counted;
...
Prime[7]+2*Prime[7+4]=17+2*31=79 is prime, so n(4)=7;
MATHEMATICA
Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 2; p1 = 3; While[ct < 200, n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2*p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; If[n[n2] == 0, n[n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]
KEYWORD
nonn
AUTHOR
Lei Zhou, Nov 20 2005
STATUS
approved