[go: up one dir, main page]

login
A113881
Table of smallest number of squares, T(m,n), needed to tile an m X n rectangle, read by antidiagonals.
18
1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 5, 5, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13, 14, 8, 4, 6, 2, 3, 7, 7, 3, 2, 6, 4, 8, 14
OFFSET
1,2
COMMENTS
a(n) = A338573(n) for n <= 105, as stated by R. J. Mathar. These sequences are essentially different though, because a(13433) = T(67,98) = T(98,67) = a(13464), but A338573(13433) != A338573(13464). The relationship between the tiling problem and resistor networks is remarkable. There are explanations in M. Ortolano et al., 2013. - Rainer Rosenthal, Nov 09 2020
LINKS
Alois P. Heinz, Antidiagonals n = 1..350, flattened (using data from A219158)
Richard J. Kenyon, Tiling a rectangle with the fewest squares, Combin. Theory Ser. A 76 (1996), no. 2, 272-291.
M. Ortolano, M. Abrate, and L. Callegaro, On the synthesis of Quantum Hall Array Resistance Standards, arXiv preprint arXiv:1311.0756 [physics.ins-det], 2013.
Mark Walters, Rectangles as sums of squares, Discrete Math. 309 (2009), no. 9, 2913-2921.
EXAMPLE
T(n,n) = 1 (1 n X n square).
T(n,1) = n (n 1 X 1 squares).
T(6,7) = 6 (2 3 X 3, 1 4 X 4, 1 2 X 2, 2 1 X 1).
T(11,13) = 6 (1 7 X 7, 1 6 X 6, 1 5 X 5, 2 4 X 4 1 1 X 1).
Table T(m,n) begins:
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
: 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...
: 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ...
: 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ...
: 5, 4, 4, 5, 1, 5, 5, 5, 6, 2, ...
: 6, 3, 2, 3, 5, 1, 5, 4, 3, 4, ...
: 7, 5, 5, 5, 5, 5, 1, 7, 6, 6, ...
: 8, 4, 5, 2, 5, 4, 7, 1, 7, 5, ...
: 9, 6, 3, 6, 6, 3, 6, 7, 1, 6, ...
: 10, 5, 6, 4, 2, 4, 6, 5, 6, 1, ...
MATHEMATICA
(* *** Warning *** This empirical toy-program is based on the greedy algorithm. Its output was only verified for n+k <= 32. Any use outside this domain might produce only upper bounds instead of minimums. *)
nmax = 31; Clear[T];
Tmin[n_, k_] := Table[{1 + T[ c, k - c] + T[n - c, k], 1 + T[n, k - c] + T[n - c, c]}, {c, 1, k - 1}] // Flatten // Min;
Tmin2[n_, k_] := Module[{n1, n2, k1, k2}, 1 + T[n2, k1 + 1] + T[n - n1, k2] + T[n - n2, k1] + T[n1, k - k1] /. {Reduce[1 <= n1 <= n - 1 && 1 <= n2 <= n - 1 && 1 <= k1 <= k - 1 && 1 <= k2 <= k - 1 && n1 + 1 + n2 == n && k1 + 1 + k2 == k, Integers] // ToRules} // Min];
T[n_, n_] = 1;
T[n_, 1] := n;
T[1, k_] := k;
T[n_, k_ /; k > 1] /; n > k && Divisible[n, k] := n/k;
T[n_, k_ /; k > 1] /; n > k := T[n, k] = If[k >= 5 && n >= 6 && n - k <= 3, Min[Tmin[n, k], Tmin2[n, k], T[k, n - k] + 1], T[k, n - k] + 1];
T[n_, k_ /; k > 1] /; n < k := T[n, k] = T[k, n];
Table[T[n - k + 1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 11 2016, checked against first 496 terms of the b-file *)
CROSSREFS
KEYWORD
nonn,look,tabl
AUTHOR
Devin Kilminster (devin(AT)27720.net), Jan 27 2006
STATUS
approved