[go: up one dir, main page]

login
A113822
Number of binary trees of weight n where leaves have positive integer weights, where the order of subtrees is insignificant. Commutative non-associative version of partitions of n.
0
1, 1, 2, 3, 7, 14, 35, 85, 226, 600, 1658, 4622, 13141, 37699, 109419, 320017, 943329, 2797788, 8346030, 25019401, 75340824, 227777899, 691146578, 2104028507, 6424449318, 19670277332, 60378290912, 185763773723, 572764664975
OFFSET
0,3
LINKS
Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 5, 9, 17.
FORMULA
a(2n) = 1 + C(a(n)+1, 2) + sum_{k=1}^{n/2-1} a(k)*a(2n-k). a(2n+1) = 1 + sum_{k=1}^{(n-1)/2} a(k)*a(2n+1-k), with a(0)=0.
EXAMPLE
For a(4)=7, we have the following 7 sums: 4, 3+1, 2+2, (2+1)+1, (1+1)+2, ((1+1)+1)+1, (1+1)+(1+1).
CROSSREFS
Sequence in context: A367387 A185089 A180564 * A036250 A191491 A210345
KEYWORD
easy,nonn,changed
AUTHOR
STATUS
approved