[go: up one dir, main page]

login
A113406
Half the number of integer solutions to x^2 + 4 * y^2 = n.
7
1, 0, 0, 2, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 2, 0, 0, 4, 0
OFFSET
1,4
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
LINKS
FORMULA
a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4)
G.f.: (theta_3(q) * theta_3(q^4) - 1) / 2.
a(4*n + 2) = a(4*n + 3) = 0. A004531(n) = 2 * a(n) if n>0. a(4*n + 1) = A008441(n). A004018(n) = 2 * a(4*n) if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 15 2022
EXAMPLE
x + 2*x^4 + 2*x^5 + 2*x^8 + x^9 + 2*x^13 + 2*x^16 + 2*x^17 + 4*x^20 + ...
MATHEMATICA
s = (EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^4] - 1)/(2 q) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 02 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 4], n)[n])}
(PARI) {a(n) = if( n<1, 0, if( n%4==1, sumdiv( n, d, (-1)^(d\2)), if( n%4==0, 2 * sumdiv( n, d, kronecker( -4, d)))))}
(PARI) {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==2, 2 * (e>1), if( p%4==3, (1 + (-1)^e) / 2, e+1)))))}
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 28 2005
STATUS
approved