[go: up one dir, main page]

login
A113319
Decimal expansion of Sum_{k>=0} 1/(k^2+1).
26
2, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1
OFFSET
1,1
COMMENTS
Known to be transcendental. After n=2 it is the same as A100554(n).
Imaginary part of psi(I) (for the real part, see A248177). - Stanislav Sykora, Oct 03 2014
REFERENCES
Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.
FORMULA
Equals 1/2 + Pi / tanh(Pi) / 2.
Equals 1+Integral_{x >= 0} sin(x)/(exp(x)-1) dx. - Robert FERREOL, Jan 12 2016.
EXAMPLE
2.076674047468581174134050794750000490445656266403816665575062484390...
MATHEMATICA
RealDigits[N[Im[PolyGamma[0, I]], 105]][[1]] (* Vaclav Kotesovec, Oct 03 2014 *)
PROG
(PARI) 1/2+Pi/tanh(Pi)/2
(PARI) imag(psi(I)) \\ - Stanislav Sykora, Oct 03 2014
(PARI) sumnumrat(1/(x^2+1), 0) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A013661 (Sum_{i>=1} 1/i^2), A232883 (Sum_{i>=0} 1/(2*i^2+1)). - Bruno Berselli, Dec 02 2013
Cf. A248177.
Essentially the same as A100554 and A259171.
Sequence in context: A104540 A178818 A354615 * A298749 A021832 A352615
KEYWORD
nonn,cons
AUTHOR
Benoit Cloitre, Jan 07 2006
EXTENSIONS
Offset changed from 0 to 1 by Bruno Berselli, Dec 02 2013
STATUS
approved