[go: up one dir, main page]

login
A113171
Short legs 'A' of exactly 7 primitive Pythagorean triangles.
1
660, 1092, 1140, 1155, 1260, 1320, 1365, 1380, 1428, 1540, 1560, 1740, 1785, 1820, 1860, 1980, 1995, 2184, 2220, 2340, 2380, 2415, 2436, 2460, 2508, 2580, 2604, 2660, 2805, 2820, 2856, 2860, 2940, 3003, 3036, 3060, 3108, 3120, 3135, 3180, 3192, 3220, 3300
OFFSET
1,1
LINKS
FORMULA
a^2+b^2=c^2
EXAMPLE
Examples of triples: 660.779.1021, 660.989.1189, 660.2989.3061, 660.4331.4381, 660.12091.12109, 660.27221.27229, 660.108899.108901
1092.1325.1717, 1092.1595.1933, 1092.6035.6133, 1092.8245.8317, 1092.33115.33133, 1092.74525.74533, 1092.298115.298117
MATHEMATICA
PyphagoreanAs[a_]:=(q={}; k=0; Do[y=(a^2+b^2)^0.5; c=IntegerPart[y]; If[c==y, p=0; If[GCD[a, b, c]==1, AppendTo[q, a.b.c]; k++ ]], {b, a+1, a^2}]; PrependTo[q, k]; q)lst={}; Do[If[PyphagoreanAs[n][[1]]==7, Print[n]; AppendTo[lst, n]], {n, 6*10^2, 2*10^3}]; lst
CROSSREFS
Cf. A056866 Orders of non-solvable groups.. A093006 Referring to the triangle in A093005, sequence contains the least term with maximal number of divisors. A138605 Short legs of more than 3 primitive Pythagorean triangles. A033993 Numbers that are divisible by exactly four different primes.
Sequence in context: A349586 A023294 A067235 * A364004 A252519 A014362
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Ray Chandler, Jan 22 2020
STATUS
approved