[go: up one dir, main page]

login
A112517
Riordan array (1, x*(1+x)*(1-x*(1+x))).
2
1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, -1, -4, 0, 1, 0, 0, -2, -6, 0, 1, 0, 0, 4, -3, -8, 0, 1, 0, 0, 4, 12, -4, -10, 0, 1, 0, 0, 1, 12, 24, -5, -12, 0, 1, 0, 0, 0, -5, 24, 40, -6, -14, 0, 1, 0, 0, 0, -12, -26, 40, 60, -7, -16, 0, 1, 0, 0, 0, -6, -48, -70, 60, 84, -8, -18, 0, 1, 0, 0, 0, -1, -8, -120, -145, 84, 112, -9, -20, 0, 1
OFFSET
0,8
COMMENTS
Riordan array product (1, x*(1+x))*(1, x*(1-x)). Row sums are A112518. Inverse is A112519.
FORMULA
Riordan array (1, x*(1-2*x^2-x^3)).
T(n, k) = Sum_{j=0..n} C(j, n-j)*C(k, j-k)*(-1)^(j-k).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
0, -2, 0, 1;
0, -1, -4, 0, 1;
0, 0, -2, -6, 0, 1;
...
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[(x(1+x)(1-x(1+x)))^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Stefano Spezia, Jun 08 2024 *)
CROSSREFS
Sequence in context: A185370 A352747 A364955 * A112519 A276981 A230305
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 09 2005
STATUS
approved