[go: up one dir, main page]

login
A112249
Numbers m such that m mod floor(log_2(m)) = 0.
7
2, 3, 4, 6, 9, 12, 15, 16, 20, 24, 28, 35, 40, 45, 50, 55, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020
LINKS
Curtis N. Cooper and Robert E. Kennedy, Chebyshev's inequality and natural density, Amer. Math. Monthly, Vol. 96, No. 2 (1989), pp. 118-124.
FORMULA
A112248(a(n)) = 0.
MATHEMATICA
Select[Range[2, 350], Divisible[#, Floor@Log2@#] &] (* Ivan Neretin, Nov 26 2016 *)
CROSSREFS
Complement of A112250.
Sequence in context: A240307 A128166 A240470 * A204502 A062437 A060729
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 30 2005
EXTENSIONS
Name corrected by Ivan Neretin, Nov 26 2016
STATUS
approved