OFFSET
0,2
COMMENTS
Let (b(n)) be the p-INVERT of (1,2,2,2,2,2,...) using p(S) = 1 - S^2; then
b(0) = 0 and b(n) = a(n-1) for n >= 1; see A292400. - Clark Kimberling, Sep 30 2017
Floretion Algebra Multiplication Program, FAMP Code: 2kbasekseq[J+G] with J = + j' + k' + 'ii' and G = + .5'ii' + .5'jj' + .5'kk' + .5e
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,2,1).
FORMULA
G.f.: (x+1)^2/((x^2+1)*(1-2*x-x^2)). [sign flipped by R. J. Mathar, Nov 10 2009]
MATHEMATICA
LinearRecurrence[{2, 0, 2, 1}, {1, 4, 9, 20}, 30] (* Harvey P. Dale, Jul 26 2011 *)
CoefficientList[Series[(x + 1)^2 / ((x^2 + 1) (1 - 2 x - x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 01 2017 *)
PROG
(Magma) I:=[1, 4, 9, 20]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-3)+Self(n-4): n in [1..35]]; // Vincenzo Librandi, Oct 01 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Aug 08 2005
STATUS
approved