[go: up one dir, main page]

login
A111465
a(1) = 1, a(n+1) = a(n)/T(n+1), if T(n+1) divides a(n), else a(n+1) = a(n) *T(n+1), where T(n) = n*(n+1)/2 is a triangular number (A000217).
1
1, 3, 18, 180, 12, 252, 9, 324, 14580, 801900, 12150, 947700, 86240700, 821340, 98560800, 13404268800, 87609600, 14981241600, 78848640, 16558214400, 3824947526400, 967711724179200, 3506201899200, 11687339664, 3798385390800
OFFSET
1,2
LINKS
MAPLE
T:=n->n*(n+1)/2: a[1]:=1: for n from 1 to 28 do if type(a[n]/T(n+1), integer)=true then a[n+1]:=a[n]/T(n+1) else a[n+1]:=a[n]*T(n+1) fi od: seq(a[n], n=1..29); # Emeric Deutsch, Aug 11 2005
MATHEMATICA
nxt[{n_, a_}]:=Module[{tr=((n+1)(n+2))/2}, {n+1, If[Divisible[ a, tr], a/tr, a*tr]}]; Transpose[NestList[nxt, {1, 1}, 30]][[2]] (* Harvey P. Dale, Aug 22 2014 *)
CROSSREFS
Cf. A000217.
Sequence in context: A080687 A231619 A223895 * A247029 A108994 A006472
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Aug 05 2005
EXTENSIONS
More terms from Emeric Deutsch, Aug 11 2005
STATUS
approved