[go: up one dir, main page]

login
A110663
Triangle read by rows: T(n,k) = Sum_{j=k..n} phi(j) (1<=k<=n), where phi is Euler's totient function.
2
1, 2, 1, 4, 3, 2, 6, 5, 4, 2, 10, 9, 8, 6, 4, 12, 11, 10, 8, 6, 2, 18, 17, 16, 14, 12, 8, 6, 22, 21, 20, 18, 16, 12, 10, 4, 28, 27, 26, 24, 22, 18, 16, 10, 6, 32, 31, 30, 28, 26, 22, 20, 14, 10, 4, 42, 41, 40, 38, 36, 32, 30, 24, 20, 14, 10, 46, 45, 44, 42, 40, 36, 34, 28, 24, 18, 14, 4
OFFSET
1,2
LINKS
Indranil Ghosh, Rows 1..100, flattened
FORMULA
T(n,n) = phi(n) = A000010(n) = number of numbers <=n and relatively prime to n.
T(n,1) = Sum_{j=1..n} phi(j) = A002088(n).
EXAMPLE
T(5,3) = 8 because phi(3)+phi(4)+phi(5) = 2+2+4 = 8.
Triangle begins:
1;
2,1;
4,3,2;
6,5,4,2;
10,9,8,6,4;
...
MATHEMATICA
T[n_, n_] := EulerPhi[n]; T[n_, k_] := Sum[EulerPhi[j], {j, k, n}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 03 2017 *)
PROG
(PARI) tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(j=k, n, eulerphi(j)), ", "); ); print(); ); } \\ Michel Marcus, Apr 05 2015
CROSSREFS
Sequence in context: A082494 A194187 A174375 * A294317 A064277 A287010
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 02 2005
STATUS
approved