[go: up one dir, main page]

login
A110050
Expansion of (2+9*x-24*x^3+16*x^4-30*x^2) / ((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)).
5
2, 19, 73, 369, 1697, 8241, 39441, 190609, 918929, 4437649, 21421201, 103433361, 499397777, 2411316369, 11642774673, 56216331409, 271436096657, 1310609581201, 6328181400721, 30555163403409, 147533373973649
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1) + 4*a(n-2) - 24*a(n-3) + 16*a(n-5) for n>4. - Colin Barker, May 11 2019
MAPLE
seriestolist(series((2+9*x-24*x^3+16*x^4-30*x^2)/((1-x)*(2*x+1)*(2*x-1)*(4*x^2+4*x-1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: -kbasejrokseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; RokType: Y[15] = Y[15] + 1/2
PROG
(PARI) Vec((2 + 9*x - 30*x^2 - 24*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x - 4*x^2)) + O(x^25)) \\ Colin Barker, May 11 2019
CROSSREFS
Sequence in context: A217082 A024220 A024389 * A219121 A054209 A256112
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 10 2005
STATUS
approved