[go: up one dir, main page]

login
A109797
First of a pair of compatible numbers, where two numbers m and n are compatible if sigma(n)-2dn=sigma(m)-2dm=m+n, for some proper divisors dn and dm of m and n respectively.
2
24, 30, 40, 42, 48, 60, 80, 80, 96, 102, 126, 140, 140, 156, 156, 156, 174, 180, 180, 198, 216, 224, 224, 264, 276, 280, 294, 294, 300, 320, 340, 372, 380, 384, 440, 440, 468, 500, 504, 510, 528, 560, 582, 608, 616, 642, 680, 684, 690, 690, 696, 702, 736, 750
OFFSET
1,1
COMMENTS
Compatible numbers were introduced by Sachs in analogy to amicable numbers, as admirable numbers are analogous to perfect numbers. Some terms have more than one counterpart (A109798), like 80 (two counterparts: 102 and 104) or 156 (3 counterparts: 210, 230 and 234). - Amiram Eldar, Oct 26 2019
LINKS
J. M. Sachs, Admirable Numbers and Compatible Pairs, The Arithmetic Teacher, Vol. 7, No. 6 (1960), pp. 293-295.
T. Trotter, Admirable Numbers. [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - N. J. A. Sloane, Mar 29 2018]
EXAMPLE
sigma(42)-2(1)=96-2=94 and sigma(52)-2(2)=98-4=94 and 42+52=94 so a(4)=42.
MAPLE
L:=remove(proc(z) isprime(z) end, [$1..10000]): S:=proc(n) map(proc(z) sigma(n) -2*z end, divisors(n) minus {n}) end; CK:=map(proc(z) [z, S(z)] end, L): CL:=[]: for j from 1 to nops(CK)-1 do x:=CK[j, 1]; sx:=sigma(x); Sx:=CK[j, 2]; for k from j+1 to nops(CK) while CK[k, 1]<sx do y:=CK[k, 1]; if x+y in Sx intersect CK[k, 2] then CL:=[op(CL), [x, y, x+y]] fi od od;
MATHEMATICA
seq = {}; Do[d = Most[Divisors[n]]; s = Total[d]; Do[m = s - 2*d[[k]]; If[m <= 0 || m <= n, Continue[]]; delta = DivisorSigma[1, m] - m - n; If[delta > 0 && EvenQ[delta] && delta/2 < m && Divisible[m, delta/2], AppendTo[seq, n]], {k, Length[d], 1, -1}], {n, 1, 750}]; seq (* Amiram Eldar, Oct 26 2019 *)
CROSSREFS
Sequence in context: A284174 A292982 A334972 * A129656 A372299 A334974
KEYWORD
nonn
AUTHOR
Walter Kehowski, Aug 15 2005
STATUS
approved